2nd ARTEMIS Annual Meeting

July 3-4, 2008

" VBF Higgs $\rightarrow \tau(h) \tau(h)$ "

Z. Zenonos 🙂 V. Cavasinni F. Sarri I. Vivarelli

Universitá & INFN di Pisa

Vector Boson Fusion Higgs @ hadronic taus

- Discovery significance at LHC environment with ATLAS
- Topology and kinematics
- Events selection analysis
- Triggering
- How we could the first data?

VBF Higgs :: Overview

■ VBF Higgs → τ τ : important for the Higgs potential discovery at ATLAS in the low-mass region: $110 < m_H < 155 \, GeV : \sigma_{NLO} = 4.96 - 3.52 \, pb$, $BR(\tau\tau) = 7.5 - 1.1\%$.

Up to recently, analysis has been performed by using only the *II* & *Ih* final states of taus.

The *hh* channel could also contribute significantly.

■ т т BR :

II = 12.25% (fully leptonic) Ih = 45.50% (semi-leptonic) hh = 42.25% (fully hadronic)

■ VBF Higgs $\rightarrow \tau \tau$ production cross section: $\sigma_{LO}^{theo}(120 \text{GeV}) \times BR(\tau \tau) \times BR(hh) = 124.4 \, fb$

Major backgrounds:

SoB	Z QCD	Z EW	ttbar	W→τνNj	QCD 2j
$\sigma_{_{\rm S}}^{}/\sigma_{_{\rm B}}^{}$	4.2x10 ⁻⁴	0.2	3.7x10 ⁻⁴	3.4x10 ⁻⁵	1.6x10 ⁻¹¹

VBF Higgs :: Forward Jets

Topology:

Two forward 'tagging' high P_τ jets

 $P_{T}(j_{1}) \ge P_{T}^{min}(j_{1}) \land P_{T}(j_{2}) \ge P_{T}^{min}(j_{2})$

Forward jets occupy the opposite hemispheres

 $\eta(j_1) \times \eta(j_2) < 0$

A *t-channel* process;

the propagator suppresses the amplitude least when p_v^2 is small:

- \rightarrow small polar scattering angles θ
- → large pseudo-rapidity $\eta = -\log(\tan(\frac{\theta}{2}))$

Large $\Delta \eta$ separation in the pseudorapidity projection $\Delta \eta = |\eta(j_1) - \eta(j_2)| \ge \Delta \eta_{min}$

to unity

alized

norm

Pseudo-rapidity distribution of the tagging jets.

Transverse momentum of second leading forward jet.

Pseudo-rapidity separation of the forward jet pair.

VBF Higgs :: Forward Jets

Topology:

Large di-jet invariant mass

 $m_{i_1,i_2} \ge m_{i_1,i_2}^{\min}$

Azimuthal tagging jets separation: VBF produces a nearly flat distribution $\Delta \phi_{ii}$

🛠 a new cut in the analysis

Low central QCD jet activity – soft forward radiation (bremsstrahlung of color charge at *small* θ in the t-channel).

Central Jet Veto; large background reduction (QCD Z^0 +multi-jets & $t \bar{t}$): two options

a) no jet with $P_T(j) \ge P_T^{min}(j) \land \eta_j^{min} \le \eta_j \le \eta_j^{max}$ \checkmark b) no jet with $P_T(j) \ge P_T^{min}(j) \land |\eta_j| \le \eta_{max}^{central}$

ATLAS central region: $|\eta| \le 3.2$

Reconstructed invariant mass of the high P₊tagging jet pair - VBF Higgs $-t\overline{t}$ Z⁰→т т 2j normalized to unity 90 8°0 0°1 |n| < 3.2(b) 0.8 Z⁰→т т 5ј 0.4 0.4 0.2 0.2 0.0 0.0 40 160 20 60 80 100 120 140 180 P_{T} GeV

 P_{τ} of jets in the central region of the detector.

normalized to unity

Azimuthal angular distribution.

 P_{\perp} of jets in the central region spanned by the tagging jets.

VBF Higgs :: Tau Jets

Topology:

 Two boosted and narrow tau jets (AtlfastTauJet candidates).

 $\boldsymbol{P}_{T}(\boldsymbol{\tau}_{1}) \geq \boldsymbol{P}_{T}^{min}(\boldsymbol{\tau}_{1}) \wedge \boldsymbol{P}_{T}(\boldsymbol{\tau}_{2}) \geq \boldsymbol{P}_{T}^{min}(\boldsymbol{\tau}_{2})$

- Missing transverse energy
- (fundamental cut to reject QCD events) $E_T^{miss} \ge E_T^{miss}_{min}$
- Narrow transverse mass distribution.

 $m_T = \sqrt{2 \left| \boldsymbol{P}_T(\tau_1 \tau_2) \right| \left| \boldsymbol{P}_T^{miss} \right| (1 - \cos \Delta \phi)} \le m_T^{max}$ $\Delta \phi = \left| \phi(\tau_1 \tau_2) - \phi(\boldsymbol{P}_T^{miss}) \right|$

```
No back-to-back tau pairs \Delta \phi_{\tau\tau} < \pi - \delta \phi
```


Azimuthal angular distribution of taus.

Transverse momentum of first tau jet (TauRec).

– VBF Higgs

 $---t \overline{t}$

normalized to unity

0.8

0.6

0.4

0.2

ი.ც–

20 40 60

80

100 120 140

160 180 200

M-

Transverse mass M_{τ} .

VBF Higgs :: Fwd jets – di-tau

Topology:

Transverse momentum balance. $\boldsymbol{P}_T = \boldsymbol{P}_T(j_1) + \boldsymbol{P}_T(j_2) + \boldsymbol{P}_T(\tau_1) + \boldsymbol{P}_T(\tau_2) + \boldsymbol{P}_T^{miss} \leq \boldsymbol{P}_T^{max}$

Taus centrality.

Tau candidates are expected to lie centrally; two options:

(a) both taus be within the eta window spanned by the forward jets: $\eta_j^{\min} \le \eta(\tau_1) \le \eta_j^{\max} \land \eta_j^{\min} \le \eta(\tau_2) \le \eta_j^{\max}$

(b) di-tau system be within the eta gap of the 2 tag jets: $\eta_j^{\min} \le \eta(\tau_1 \tau_2) \le \eta_j^{\max}$

Taus polar angle distribution;

- → uncorrelated to Higgs (scalar, spin=0)
- → correlated to Z-boson (vector, spin=1)
 - a new cut in the analysis(under study)

Angle between tau and reconstructed ditau measured in the COM. η distribution of tagging jets and the di-tau system.

VBF Higgs :: Mass Reconstruction

Collinear Approximation: decay products of the boosted tau are almost collimated.

Principle: the initial momenta are equal to the final ones in the transverse plane $\vec{P}_T^{\tau_{\alpha}} + \vec{P}_T^{\sigma} = \vec{P}_T^{\alpha} + \vec{P}_T^{\beta} + \vec{P}_T^{miss}$.

VBF Higgs :: Collinear Approximation

 Azimuthal angle requirement for mass reconstruction

 $\Delta \phi = |\phi(\tau_1) - \phi(\tau_1)| \le \Delta \phi_{max} \wedge x_{1,x_2}$

x-momentum fractions condition: two options

 $\checkmark (a) \text{ square } x_{\min} \le x_1 \le 1.0 \land x_{\min} \le x_2 \le 1.0$

(b) quadrant $x_1^2 + x_2^2 \le 1 \land x_1, x_2 \ge 0$

Quadrantal selection in the || channel. arXiv:hep-ph/0402254v1

VBF Higgs :: Background Estimation

A Cut Factorization Method (CFM)

- A Monte Carlo-based prediction is limited by insufficient statistics.
- The global efficiency of the full cut selection cannot be estimated directly.
- Utilize an approximative technique to estimate the QCD background rate.
- Cut factorization procedure :
 - → ignore cuts not related to jet kinematics (tau & MET related cuts),
 - → normalize efficiency at the transverse mass M_{τ} point of the complete cut flow.

QCD multi-jets background prediction

Strategy:

- → Sample of 80M AtlFast QCD di-jet events in the P_{τ} window [17, 280] GeV.
- → Selected events with 2 central jets above tau P_T thresholds are weighted with *Tauld* parametrization from full simulation.
- Uncertainties:
 - ▶ factor $2 \sim 3^{\circ}$ ← the parton shower (Pythia) underestimates the forward tagging jet requirement
 - ▶ factor ~5 ← the final additional safety factor to multiply the prediction of CFM

Francesca Sarri

francesca.sarri@pi.infn.it

VBF Higgs :: Analysis Summary

	VBF H(120 GeV)	Z ⁰ QCD	Z ^o EW	ttbar	W → τν +Nj (η >1)	QCD 2j X f=5	
Cross Section (fb)	309.1	740E+03	1693	833E+03	9087E+03	1.91E+013	
EF	73.3	40330	1693	498900	922E+03	1.91E+013	
tau35i+MET40	11.4	1756	126	78177	39.6E+03		(
2 hadronic taus	1.83	161	4.9	384	317	2.76E+006	
MET > 40 GeV	1.43	108	3.7	352	243	970	
Collinear Approx.	1.03	72	2.3	50	20	170	
м _т	1.03	72	2.3	44	18	160	f
N jets > 2	0.86	46	2.1	39	8	86	1'
ΣΡ _τ	0.83	40	1.9	28	8	75	
Forward jets	0.72	17	1.1	11	3	23	
Jet kinematics	0.45	1.4	0.43	0.7	0.5	8	
CJV	0.39	0.7	0.36	0.3	0.3	4	
Mass window	0.34	0.08	0.03	0.06	0.1	1	

VBF H – hh channel,

Red: Estimated by CFM,

QCD multi-jets: an additional safety factor (5) is adopted.

Analysis included in the ATLAS CSC note 2008.

Potential Discovery Significance

- $\rightarrow \int dt L = 30 fb^{-1}$
- → Higgs input mass = 120 GeV
- → Fully simulated events
- → QCD jets background estimated by AtlFast
- → Mass window [105, 140] GeV

Including the safety factor x5

$$S = \frac{N_{s}}{\sqrt{N_{B}}} = 1.65(\sigma)$$
 $S = \frac{N_{s}}{\sqrt{N_{s} + N_{B}}} = 1.47(\sigma)$

Without the safety factor x5

$$S = \frac{N_s}{\sqrt{N_B}} = 2.72(\sigma)$$
 $S = \frac{N_s}{\sqrt{N_s + N_B}} = 2.07(\sigma)$

VBF Higgs :: Triggering

For the several tau final states ATLAS trigger system provides the following possibilities:

ll & lh channels

- clean signature prompt lepton
- events are selected by e25i or mu20i
- combined triggers tau+e, tau+mu, forward tagging jets are under study

hh channel

unlike the signature of the lepton trigger, a single tau trigger is expected to be exposed to the huge QCD jets background

- a combined tau trigger tau35i+MET40
- disadvantage of MET40: relatively low efficiency on signal (applied at first level of trigger)

tau trigger performance have been improved and double tau triggers (e.g. 2tau35i) are under study.

тт Final State	Trigger Menu	Efficiency x Acceptance (%)
		(VBF Higgs 120 GeV)
ll, lh	e25i	9.08 ± 0.03
ll, lh	mu20i	9.88 ± 0.04
hh	tau35i+MET40	3.67 ± 0.02

Mario Campanelli, UCL mario.campanelli@cern.ch

VBF Higgs :: Triggering

 $\boldsymbol{\eta}$ distribution obtained with an OR of central and forward jets (for $|\boldsymbol{\eta}|$

Forward Jets Trigger

Until a few weeks ago, FCAL data have not been unpacked at L2 and EF level, so no triggering was possible for jets with $|\eta| > 3.2$.

ries/0.5 rad

Now, that unpacked code is present; we can access jets at trigger level in the forward region and create more complex trigger paths to apply.

For the moment, only single-jet (e.g. fj18) and dijet (2fj18) paths are implemented but implications for VBF physics are obvious and important.

Plan: start this year with diffractive topologies,like jet-gap-jet and adopt a VBF trigger next year.

→ η distribution obtained with an OR of central and forward jets at trigger level:

j18 = |η| <3.2 & P_τ >18 GeV

fj18 = 3.2 < η <4.9 & P_τ >18 GeV

- there are jets at $|\eta| > 3.2$
- no discontinuity in $\boldsymbol{\varepsilon}$ around that area

→ ΔR distribution:

the position resolution for forward jets is not much worse than the central ones

ΔR between the triggered jet and the off-line reconstructed one.

Trigger jet efficiency: is almost the same for central and forward jets.

With the triggers **2j42_xe30** and **j70_xe30** for L=10³¹, in 10 pb⁻¹ of data we could have few **thousands** events (*) characterized by:

- $E_T^{miss} > 40 \text{ GeV}$
- 4 jets :

two central with

- \rightarrow P_T above 35 and 30 GeV,
- two forward with
 - → η₁.η₂<0, Δη>4,
 - \rightarrow P_T> 40 and 20 GeV,
 - → M_{jj}> 700 GeV.

(*) estimated by using atlfast multijet events

This allows to study the *shape* and the *normalization* of the multi-jet background for our channel.

VBF Higgs :: Synopsis

- For first time ATLAS has investigated the potential of the VBF $H \rightarrow \tau \tau$ *hh*-channel.
- The reconstruction of the signal maintains an efficiency and $M_{_{TT}}$ resolution

comparable to the *II*- and *Ih*-channels.

- Significant improvements could be done:
 - → trigger efficiency and performance
 - implement new analysis cuts and likelihood techniques
- Understand the tau jet efficiency power on signal and background.
- The open question for this channel is estimating the size of the QCD

background; a question that can only be answered with data.

Backup Material

VBF Higgs :: Analysis Skeleton

Fast Simulation:

Jet multiplicity minimum requirement: 4 jets	✓	
Tau multiplicity minimum requirement: 2 taus	✓	
Event jet topology – 4 pJets +2 TJets (initial acceptance)		
Two tau tagged jets (TauRec)	\checkmark	
First tau candidate minimum P _T (GeV)	35.0	
Second tau candidate minimum P _T (GeV)	30.0	
Two forward 'tag' jets (no overlap with taucands), $\Delta R > 0.2$	\checkmark	
First forward jet minimum P _T (GeV)	40.0	
Second forward jet minimum P _T (GeV)	20.0	
Minimum E _T ^{miss} (GeV)	40.0	
Forward jets in opposite hemispheres: $\eta_1 \ge \eta_2 < 0$	\checkmark	
Minimum $\Delta\eta$ -gap of the forward jets	4.0	
Minimum invariant mass of the forward jet pair (GeV)	700.0	
Central Jet Veto: no jets in the η -range defined by the forward jets of PT >20 GeV	\checkmark	
Central Jet Veto: no jets in the central pseudorapidity region of the detector, $PT > 20 GeV$	x	
Maximum azimuthal separation $\Delta \phi$ between the tagging jets		
Maximum $\Delta \phi$ between the taus (to ensure the collinear approximation functionality)		
Momentum fraction carried by tau: $x_{min} < x_i, x_j < x_{max}$		
Momentum fraction carried by tau: $x_a^2 + x_b^2 < 1$	x	
Minimum x _a -fraction in collinear approximation / tau reconstruction	0.2	
Maximum x_{b} -fraction in collinear approximation / tau reconstruction	1.0	
Maximum reconstructed transverse mass M _T (GeV)	80.0	
Taus centrality: both taus be within the η -window spanned by the forward jets	\checkmark	
Taus centrality: taus as system be within the η -gap of the 2 tagging jets		
Maximum amplitude of the total vector P $_{_{ m T}}$ (Σ P $_{_{ m T}}$ balance) (GeV)	60.0	
Taus angular correlation to spin	×	
Left offset of the reconstructed Higgs mass window (GeV)		
Right offset of the reconstructed Higgs mass window (GeV)		
Higgs recontructed mass center point (GeV)	120.0	

VBF Higgs :: Analysis Skeleton

Full Simulation: ... +

trigger tau35i + L1 MET40	✓	
Two tau tagged jets of PT	> 30, 35 GeV	
Good tau candidate (TauRec):		
ΣΙQΙ	1.0	
Σ Ntracks = 1 or 3	1 or 3	
Likelihood discriminant > 4		
Opposite sign cut		
Electron veto:		
if $ \eta(\tau) < 1.7 \rightarrow TRT_HT_Hits / TRT_Hits$	<0.2	
EHAD/EEM > 0.002 in full pseudorapidity range in AOD within $\Delta R(\eta, \psi) < 0.1$ (Electron author =1,3)	✓	

VBF Higgs :: AtlFast MultiJet Estimation

	3jets (Id.6916)	Cross (pb)	Lumi (pb-1)	Trigger
Total	1255000	17000000	0.073	
E_{T}^{miss} 40GeV	820			
4jets	3 85			
2 central	131			3 w. 2jets > 42GeV & E_T^{miss} > 30GeV
2 forward	3			2 w. 1 jet > 70GeV & E_T^{miss} > 30GeV
	4jets (1d.6917)	Cross (pb)	Lumi (pb-1)	Trigger
Total	2295000	2630000	0.87	
E_{T}^{miss} > 40GeV	2626			
4jets	2145			
2 central	1275			19 w 2jets > 42GeV & E_T^{miss} > 30GeV
2 forward	23			18 w ljet > 70GeV & E_T^{miss} > 30GeV
	5jets (Id.6918)	Cross (pb)	Lumi (pb-1)	Trigger
Total	2000000	521000	3.84	
Ermiss > 40GeV	5053			
4jets	4999			
2 central	4081			▶147 w 2jets > 42GeV & E _T ^{miss} > 30
2 forward	164			133 w ljet > 70GeV and E_T^{miss} > 30

VBF Higgs :: Collinear Approximation

Collinear Approximation; A method to reconstruct tau pairs

Principle of the collinear approximation:conservation of momenta in the *x*-*y* plane