CP-violation scenario: A light Higgs in SUSY cascades?

Alison Fowler

IPPP

University of Durham Work in collaboration with G. Weiglein

2nd ARTEMIS Annual Meeting, Paris, 3-4 July 2008

Outline

- Higgs sector in the CP-violating MSSM
- Higgs production in CP-violation scenarios
- 3 Higher order corrections
- Summary

MSSM Review

- Every SM particle gets supersymmetric partner:
- \widetilde{f} , \widetilde{B} , $\widetilde{W}^{\pm,3}$, \widetilde{g} , \widetilde{h}_u^+ , \widetilde{h}_d^- , \widetilde{h}_u^0 , \widetilde{h}_d^0
- 2 Higgs doublets ⇒ 5 physical Higgs bosons
- Rich mixing structure:
 - $\widetilde{f}_{L,R}$ mix \Rightarrow sfermions $\widetilde{f}_{1,2}$
 - $\widetilde{\mathsf{h}}_{u,d}^{\pm},\widetilde{\mathsf{W}}^{\pm}$ mix \Rightarrow charginos $\widetilde{\chi}_{1,2}^{\pm}$
 - $\widetilde{\mathbf{h}}_{u}^{0},\widetilde{\mathbf{h}}_{d}^{0},\widetilde{\mathbf{B}},\widetilde{\mathbf{W}}^{3}$ mix \Rightarrow neutralinos $\widetilde{\chi}_{1,2,3,4}^{0}$

New source of CP-violating complex phases: A_f , μ , $M_{1,2,3}$ May help explain matter-antimatter asymmetry of universe

Higgs Sector

At tree-level:

Higgs sector is CP-conserving:
 h⁰, H⁰ (CP-even), A⁰ (CP-odd), H⁺, H⁻

Beyond tree-level:

- Loop corrections are large ($\mathcal{O} \sim 100\%$)
- Complex parameters $\phi_{A_{t,b,\tau}}$, ϕ_{μ} , $\phi_{M_{1,2,3}}$ enter via loops
- Mixing between h,H,A → h₁, h₂, h₃

- Higgs sector is CP-violating at 1-loop level
- CP-violating mixing $\propto Im(A_t\mu)$

CPX Scenario at LEP

Extreme CP violating scenario with large h-H-A mixing.

μ	$M_{ m SUSY}$	<i>M</i> ₃	$ A_{t,b, au} $	ϕ_{M_3}	$\phi_{At,b, au}$
2000	500	1000	900	$\pi/2$	$\pi/2$

[M. Carena et al. '00]

- h₁ mostly CP-odd A⁰
- Suppression of ZZh₁ coupling
- LEP: $e^+e^- \rightarrow Z^* \rightarrow Zh$, hA
- h₂ may be within LEP reach
- $h_2 \rightarrow h_1 h_1$: difficult final state
- ∴ Light Higgs not excluded
- CPX hole at $t_{\beta} \approx 7$, $M_{h_1} \approx 40 \text{GeV}$

[LEP Higgs Working Group 06]

CPX scenario at LHC

[M. Schumacher, ATLAS 07]

 CPX holes not covered by conventional channels at LHC (VVh₁, t̄th₁ suppressed)

Higgs in SUSY cascade decays

- Direct Higgs production by SM-like processes well-known.
- Need to consider other production methods
 (eg. tth, [Datta et al. '07], H+Wh, [Godbole et al. '05], \(\tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{0} h_1\)
- SUSY cascade decays: another source of light Higgs. [Djouadi et al. '03]

$$pp \rightarrow \widetilde{g}\widetilde{g}, \widetilde{q}\widetilde{q}, \widetilde{g}\widetilde{q} \rightarrow \widetilde{\chi}_{i}^{0}, \widetilde{\chi}_{i}^{+} + X \rightarrow \widetilde{\chi}_{j}^{0}, \widetilde{\chi}_{j}^{+} + X + h, H, A, H^{\pm}$$

- Higgs via cascade decays may complement SM-like searches.
- Also a probe to uncover parameters of EWSB.

CPX Cascades

CPX with $M_2 = 200$, tan $\beta = 7$:

$M_{\widetilde{\chi}^0_{3,4},\widetilde{\chi}^+_2}$	$M_{\widetilde{g}}$	$M_{\widetilde{u},\widetilde{d},\widetilde{c},\widetilde{s}}$	$M_{\widetilde{t}_{1,2}}$	$M_{\widetilde{b}_{1,2}}$	$M_{\widetilde{\chi}_2^0,\widetilde{\chi}_1^+}$	$M_{\widetilde{\chi}_1^0}$
2000	1000	≃500	339,664	431,564	198.8	94.6

$$\widetilde{g} \stackrel{8.5\%}{\longrightarrow} \widetilde{u}_1 \stackrel{32.9\%}{\longrightarrow} \widetilde{\chi}_2^0$$

$$\widetilde{g} \overset{8.5\%}{\longrightarrow} \widetilde{s}_1 \overset{25.8\%}{\longrightarrow} \widetilde{\chi}_2^0$$

Total: 19% gluinos decay to $\tilde{\chi}_2^0$, which may decay to h_1 .

CPX Cascades

CPX with $M_2 = 200$, tan $\beta = 7$:

	$M_{\widetilde{\chi}^0_{3,4},\widetilde{\chi}^+_2}$	$M_{\widetilde{g}}$	$M_{\widetilde{u},\widetilde{d},\widetilde{c},\widetilde{s}}$	$M_{\widetilde{t}_{1,2}}$	$M_{\widetilde{b}_{1,2}}$	$M_{\widetilde{\chi}^0_2,\widetilde{\chi}^+_1}$	$M_{\widetilde{\chi}_1^0}$
ĺ	2000	1000	≃500	339,664	431,564	198.8	94.6

$$\widetilde{g} \stackrel{8.5\%}{\longrightarrow} \widetilde{u}_1 \stackrel{32.9\%}{\longrightarrow} \widetilde{\chi}_2^0$$

$$\widetilde{g} \overset{8.5\%}{\longrightarrow} \widetilde{s}_1 \overset{25.8\%}{\longrightarrow} \widetilde{\chi}_2^0$$

Total: 19% gluinos decay to $\tilde{\chi}_2^0$, which may decay to h_1 .

Loop Corrections in the Higgs Sector

How to describe neutral Higgs bosons?

- 2 input parameters: $m_{H^{\pm}}$, tan β
- m_h , m_H , m_A receive loop corrections.
- Factors Z_{ij} include mixing between h, H, A.

Improved born approximation

- Automatically includes h-H-A self-energy diagrams
- m_{h_i} , Z_{ii} are obtained from FeynHiggs2.6.3

For full vertex correction, also require triangle diagrams and additional self energy diagrams: eg.

Result based on complete 1-loop result supplemented with 2-loop propagator-type corrections:

i.e. 2-loop masses and 2-loop Z factors from FeynHiggs

$ilde{\chi}^0_2$ Decay Width

CPX:
$$\tan \beta = 7$$
, $M_2 = 200$

$$\Gamma(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 h_1)$$

- Improved Born: $Z_{ij}^{(2)}\Gamma_j^{tree}$
- Full result: $Z_{ij}^{(2)}\Gamma_j^{(1)}$
- $t, \tilde{t}, b, \tilde{b}$ dominant.
- Genuine vertex corrections up to 50% in extreme CPX scenario.

[A.F, G.Weiglein, in preparation '08]

$\tilde{\chi}^0_2$ Decay Width

CPX:
$$\tan \beta = 7$$
, $M_2 = 200$

$$\Gamma(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 h_2)$$

- Improved Born: $Z_{ij}^{(2)}\Gamma_j^{tree}$
- Full result: $Z_{ij}^{(2)}\Gamma_j^{(1)}$
- $t, \tilde{t}, b, \tilde{b}$ dominant.
- Genuine vertex corrections up to 40% in extreme CPX scenario.

[A.F, G.Weiglein, in preparation '08]

$\tilde{\chi}_2^0$ Branching Ratio

Decay modes:

$$\tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{0} h_{1} (44 - 98.5\%)$$
 $\rightarrow \tilde{\chi}_{1}^{0} h_{2} (55 - 0\%)$
 $\rightarrow \tilde{\chi}_{1}^{0} Z (\text{suppressed})$
 $\rightarrow \tilde{\chi}_{1}^{0} f \bar{f} (\text{suppressed})$

Effect of loop corrections:

 h_1 , h_2 modes are each enhanced by 40,50% \Rightarrow effect on BR is only 5%.

[A.F, G.Weiglein, in preparation '08]

CPX Cascades

CPX hole with $\tan \beta = 7$, $M_{h_1} \sim 40 \, GeV$:

- Produce \tilde{g} ($\sigma_{\tilde{g}\sim 1000}\sim 1pb$) \rightarrow 11% cascade decay to h_1
- Or produce \tilde{q} ($\sigma_{\tilde{q}\sim 500}\sim 50 pb$) ightarrow up to 42% decay to h_1

Question: Is it possible to dig such a signal out of SM and SUSY backgrounds?

Summary

- In CP-violation scenarios, h₁ may be as light as 30-40GeV.
- Such a light h_1 may be significantly produced via $\tilde{\chi}_2^0$ decay.
- Genuine vertex corrections to $\tilde{\chi}^0_2 \to \tilde{\chi}^0_1 h_1$ are important.
- Results were presented for complete 1-loop result with 2-loop masses and Z factors: the most precise prediction for the process $\tilde{\chi}^0_i \to \tilde{\chi}^0_i h_k$
- Outlook:
 - Results will be provided as a public tool so that experimental studies can be carried out.