VECTOR BOSON SCATTERING STATUS REPORT

J. Butterworth, A. Davison, V. E. Özcan, P. Sherwood University College London

VBS CSC group: Annecy, Dresden, Glasgow, IHEP, Montreal, UCL

2nd Artemis Meeting, Paris, July 04, 2008

OVERVIEW

- A light-hearted introduction
 - ie. lots of words and no colorful plots
- The dirty bits
 - Distinguishing features, jet structure, corrections...
- Results
- Where next?

What I will not talk about?
Artemis deliverable on the measurement of underlying event with data.
But some work that is relevant to this topic has recently appeared on *arXiv:* 0806.2949
M. Bahr, J. Butterworth, M. Seymour

WHY BUILD THE LHC?

- Vector bosons we observe: Ws, Z and photon
 - EW sym. broken: heavy W/Z, but massless photon
- How do we explain this?
 - Higgs mechanism in the SM
 - Many alternatives: technicolor, string interactions, interactions in extra dimensions, bulk-brane interplay...
- But the SM is well-tested and appears complete...
 - No, we have not found the Higgs yet!
 - No fundamental reason why physics responsible for EWSB is weakly interacting.

LIFE WITHOUT HIGGS

- What happens to SM (and its extensions like SUSY) if no (light) Higgs exists?
 - Nature is more interesting than what we have thought.
 - Aleph's finding turns out to be a real stat. fluctuation.
 - Enhancement to <favorite_channel_for_exotic_particle> changes by a factor of <X>.

- VV (V=W/Z) scattering x-section blows up.
 - Why? When Vs are on-shell, quasi-elastic scattering amplitude will diverge at the lowest order.

==> There must be something else then.

EXPERIMENTAL GOAL

- In short: Measure differential scattering cross-section as a function of VV center-of-mass energy.
 - Identify WW, WZ or ZZ at high momenta.
 - Try to make sure they interacted with each other. (Don't want two Ws from two tops, for instance.)
 - Make a histogram of their invariant mass.
 - If you see a resonance or a total cross-section higher than SM prediction => New Physics!
 - If not, stringent constraints on SM extensions.
- Do all this as model-independent as possible!

EW CHIRAL LAGRANGIAN

- The SM is well-tested (and not yet fully complete).
 - So take what is "known" (SM Lagrangian without the Higgs) and make it as complete as imaginable...
 - Introduce 3 Goldstone-boson fields to give mass to VBs.
 - Starting from lowest-dimension and expanding, write all possible operators for these fields. (Keeping in mind the EW precision observables).
 - A nice low-energy effective theory that can yield modelindependent predictions.
 - Caveat: Needs to be unitarized for TeV scale.
 - After unitarization, can generate MC signal events.

PADÉ UNITARIZATION

- Padé unitarization gives excellent description for πscattering in QCD.
- (α₄, α₅) determine mass, spin
 & presence of resonances.

Measure spectrum
Look for resonance
For signal MC: unitarization scheme with resonances.

MONTE CARLO

tt: MC@NLO, Herwig, Jimmy W/Z+3/4 jets: Madgraph (crosschecked against Alpgen) Signal: Modified Pythia (crosschecked against Whizard)

HADRONIC VBS: 1 OR 2 JETS

- At high enough P_T, hadronic VB starts to create a single jet.
- In each event: Take highest P_T jet. Mass close to W/Z ?

Yes: This jet is the VB candidate. Apply cut on jet substructure.

No: Loop over all pairs of jets. Find the pair whose combination gives the highest P_T. The combination is the VB candidate. Apply mass and relative-momentum cuts.

JET STRUCTURE

- k_T merging intrinsically ordered in scale.
 - Undo last merging: Get the Y-scale at which the jet would split into two subjets.
 - Y-scale ~ $O(m_{VB}/2)$ ~ k_T of one subjet wrt. other

OTHER BITS UNDER THE HOOD

• "Realistic" study: Not enough full-sim MC

- AtlFast is quite good overall, but had(has?) no lepton inefficiency implemented.
- Manually added P_T-dependent correction.
- "Smart" overlap removal:
 - First find hadronic VB candidates.
 - Then apply electron overlap rejection to other jet candidates.

PUTTING IT TOGETHER

Cut	Non-resonant Signal		tt Background		W+jets Backgrounds	
	Efficiency (%)	σ (fb)	Efficiency (%)	σ (fb)	Efficiency (%)	σ (fb)
Starting sample	-	10	_	450000	_	21365
$\equiv 1$ Hadronic W	38.0 ± 0.7 (41)	3.8(4.1)	18.9 ± 0.1 (19)	85000 (84000)	$8.3 \pm 0.1 \; (9)$	1760 (1820)
$\equiv 1$ Leptonic W	48.2 ± 1.1 (55)	1.8(2.3)	22.1 ± 0.2 (29)	19000 (25000)	$23.3 \pm 0.7 (31)$	410 (570)
p_T (Had. W) > 200 GeV	82.1 ± 1.3 (86)	1.5(1.9)	16.8 ± 0.4 (20)	3200 (5000)	$34.4 \pm 1.7 \ (43)$	140 (240)
$ \eta $ (Had. W) < 2	94.4 ± 0.8 (94)	1.4(1.8)	$90.3 \pm 0.7 \ (90)$	2900 (4500)	80.1 ± 2.4 (77)	110 (190)
p_T (Lep. W) > 200 GeV	90.4 ± 1.1 (87)	1.3(1.6)	$34.5 \pm 1.3 \ (29)$	990 (1300)	$48.5 \pm 3.3 \ (40)$	55(75)
$ \eta $ (Lep. W) < 2	96.0 ± 0.8 (96)	1.2(1.5)	$94.6 \pm 1.0 \ (90)$	930 (1200)	80.4 ± 3.9 (79)	44 (59)
$\equiv 2 \text{ tag jets}$	45.1 ± 2.0 (54)	0.6(0.8)	8.1 ± 1.3 (10)	76 (120)	$13.9 \pm 3.5 \ (22)$	6 (13)
$\equiv 0$ top candidates	56.5 ± 3.0 (47)	0.3(0.4)	7.9 ± 4.4 (2)	5(2)	$60.5 \pm 13.1 \ (23)$	4 (3)
Central jet veto	91.1 ± 2.3 (94)	0.3(0.4)	< 50 (< 25)	< 5 (< 1)	84.9 ± 13.7 (91)	3 (3)
Trigger efficiency	98 ± 1	0.3(0.4)	~ 100	< 5 (< 1)	82 ± 16	3 (3)

• Two VB candidates: $P_T > 200$ GeV and $|\eta| < 2$.

- Two tag jets: $|\eta| > 2$, $P_T > 20$ GeV, E > 300 GeV, $\Delta \eta > 4.4$
- No W + other jet close to top mass.
- No central jets with $P_T > 30$ GeV.

SOME RESULTS

CSC CONCLUSION AND WHAT HAVE WE LEARNED?

- Discovery of possible resonances will need few tens of fb⁻¹.
 - Larger than earlier estimates. Why?
 - First full simulation study. Stuff we worried about, ex. jet substructure, turns out to be modeled ok, stuff we weren't worried about, ex. lepton eff., is quite bad.
 - More realistic backgrounds.
 - Earlier estimates of W/Z+ jets with *Pythia* and/or QCD diagrams not considered.
 - W/Z+jets turns out to be much more significant. (Now worse than tt for lvqq analyses.)
- Successful conclusion to this "commissioning" exercise. Developed techniques (and tools) applicable to real data...

• ysplitter tool (part of Jetrec for some time)

WHAT NEXT?

- Many things to tune with improved MC statistics...
 - Lepton ID at medium-to-high momenta.
- Promising ideas not yet exploited...
 - b-tagging : in WW/WZ (lvqq) analyses, tt suppression with top veto => combinatoric loss on signal.
 - P_T balance of VB+VB+tag+tag system.
- Expertise in highly-boosted vector bosons.
 - Would like to be involved in understanding jets in early data.
 - Jet substructure, calibrating jet mass...
 - Distinguishing hadronic W and Z jets
 - Even fully-hadronic channels might be viable for exploitation.

expertise with jet structure already put to use for VH (Adam's talk)

WHAT NEXT?

- VBS = A flagship channel to keep on looking year-after-year.
 - Even if we see nothing, that means a lot in model building.
 - Need a robust framework which shields the conceptual analysis from "fashion" trends of the day.
 - Developing a toolkit to support an analysis that:
 - can be run both as part of Athena or independently.
 - easily archive-able and repeatable.
- We (as Atlas) should have a systematic program to look for model-dependent signatures of strong EW breaking...