

Alessia D'Orazio

Max-Planck-Institut für Physik, München

Annual ARTEMIS Meeting

Paris July 04th 2008

Event selection

Event Preselection

I. lepton quality and kinematical cuts

Muons

combined or low-pT p_T > 5 GeV and $|\eta| < 2.5$

Electrons

at least LooseElectron E_T > 5 GeV and $|\eta| < 2.5$

2. creation of lepton pairs

leading (i.e. dilepton candidate closest to Z mass) : $p_T (E_T) > 20 \text{ GeV/c} (GeV/c^2)$ following : $p_T (E_T) > 7 \text{ GeV/c} (GeV/c^2)$

Event Selection

- four leptons (e,µ) in pairs of opposite charge and same flavor
- 2. electrons: additional lepton pair quality leading: LooseElectron following: LooseElectron
- 3. Z mass constraint (i.e. Breit-Wigner + Gaussian distribution, with σ equal to the experimental resolution) - applied to both Z's if M_H > 200 GeV/c²
- 4. Kinematic cuts on Z objects
- 5. Higgs mass window $M_H \pm 2\sigma_{MH}$

Event selection

Event Preselection

1. lepton quality and kinematical cuts

Muons

combined or low-pT $p_{T} > 5 \text{ GeV and } |\eta| < 2.5$

Electrons

Event Selection

- 1. four leptons (e,μ) in pairs of opposite charge and same flavor
- 2. electrons: additional lepton pair quality

leading: LooseElectron following: LooseElectron

3 7 mass constraint (i e Breit-Wigner + Different electrons selection wrt the one used for the low masses analysis: moving from Medium-Medium to Loose-Loose signal efficiencies increase ~40 H > 200 GeV/c² over a small ZZ background

leading ($\mathbb{Z}(\mathbb{Z}(\mathbb{Z}))$ and \mathbb{Z} be background contribution ~0 in high m_H region Z mass) : $p_T(E_T) > 20 \text{ GeV/c} (\text{GeV/c}^2)$

following : p_T (E_T) > 7 GeV/c (GeV/c²)

5. Higgs mass window M_H ± 2σ_{MH}

Kinematic cuts

H Mass	Z1 mass window	Z2 mass cut	H ma	H mass window (GeV		
(GeV)	(GeV)	(GeV)	4e	4μ	$2e2\mu$	
200	±12	>60	3.9	3.7	3.8	
300	± 12	± 12	8.4	8.4	8.4	
400	± 12	± 12	16.5	17.3	17.2	
500	± 12	± 12	33.8	34.4	32.8	
600	± 12	± 12	52.2	57.2	53.2	

Signal pdf

signal modeled by a relativistic Breit-Wigner convoluted with a Gaussian + Fermi function to describe the tail

photons coming from final state radiation not considered in the m_H reconstruction: fast check using MC truth \Rightarrow events with high p_T photon (~100 GeV) from Z

photon recovery to implement to gain a better resolution on the mass

An example: selection cut flow for $\mathcal{M}_{\mathcal{H}}$ =400 GeV

Selection cut			Signal	
		4e	4μ	$2e2\mu$
Generated events		9776	9631	19443
Trigger selection	1	99.7%	99.3%	99.7%
Lepton preselection	2	68.1%	76.7%	73.6%
Lepton quality and p_T	3	64.1%	76.0%	69.8%
Z's mass cuts	4	51.0%	58.6%	56.2%
Calo Isolation	5	51.0%	56.6%	55.3%
Tracker Isolation	6	49.9%	56.2%	54.5%
IP cut	7	44.1%	54.4%	50.6%
H Mass cut	8	33.5%	41.8%	38.4%

Selection cut		ZZ			Zbb			
		4e	4μ	$2e2\mu$	4e	4μ	$2e2\mu$	
Generated event			95900			429500		
Trigger	1	96.6%	96.6%	96.6%	91.4%	91.4%	91.4%	
Preselection	2	13.8%	17.6%	31.4%	2.6%	9.4%	12.0%	
Lepton quality and p_T	3	12.0%	16.0%	27.9%	$6.4 \cdot 10^{-1}\%$	2.1%	2.7%	
Z mass cuts	4	7.6%	9.9%	18.0%	$1.0 \cdot 10^{-2}\%$	$7.3 \cdot 10^{-2}\%$	$7.7 \cdot 10^{-2}\%$	
Calo Isolation	5	7.6%	9.6%	17.5%	$1.0.10^{-2}\%$	$4.4 \cdot 10^{-3}\%$	$1.7 \cdot 10^{-2}\%$	
Track Isolation	6	7.4%	9.5%	17.2%	$1.2 \cdot 10^{-3}\%$	$1.6 \cdot 10^{-3}\%$	$3.7 \cdot 10^{-3}\%$	
IP cut	7	6.5%	9.1%	15.8%	$4.7 \cdot 10^{-3}\%$	$2.3 \cdot 10^{-4}\%$	$1.9 \cdot 10^{-3}$	
H Mass window	8	3.5 ·10 ^{−1} %	6.0 ·10 ^{−1} %	9.6 ·10 ⁻¹ %	0	0	0	

No $Z(\rightarrow ee)$ and tt bkg contributions at high Higgs masses

Selection efficiency on signal

Results : events numbers and significances

NLO cross section
normalized to 30 fb⁻¹

Mass (GeV)		200	300	400	500	600
Selection						
4 <i>e</i>	Signal	1.41	0.917	0.737	0.370	0.174
	ZZ^*/γ^*	0.689	0.342	0.225	0.228	0.179
	Significance (30 fb^{-1})	7.4	6.6	6.3	3.4	1.9
4μ	Signal	1.94	1.16	0.918	0.463	0.206
	ZZ^*/γ^*	0.867	0.468	0.379	0.346	0.296
	Significance (30 fb^{-1})	9.0	7.2	6.3	3.6	1.8
$2e2\mu$	Signal	3.33	2.13	1.69	0.825	0.377
	ZZ^*/γ^*	1.53	0.836	0.610	0.570	0.438
	Significance (30 fb^{-1})	11.7	9.8	9.0	5.0	2.7
All	Signal	6.68	4.21	3.34	1.66	0.76
	ZZ^*/γ^*	3.09	1.65	1.21	1.14	0.914
	Significance (30 fb^{-1})	16.5	13.8	12.7	7.1	3.8

Mass distributions

Mass distributions

- reconstructed 4-lepton mass after full event selection
- all 3 channels included
- no pileup, no systematics
- normalized to 30 fb-1

Signal significance

- signal events selected within a $\pm 2\sigma_{\text{MH}}$ mass window
- results for integrated luminosity 30 fb-1
- only statistical fluctuation
- background assumed to be known with a negligible uncertainty

Significance extraction from data

• evaluation of background uncertainties to include in the significance calculation \rightarrow reduce the confidence level for claiming a discovery

 four fit-based approaches for background and significance extraction

 full range fit using signal hypothesis at fixed mass and profile likelihood method to extract the significance

+background-only sideband fit in a restricted mass range using number counting with frequentist treatment of background uncertainty

+background-only sideband fit using the full mass range and assuming knowledge of the shape of the M_{ZZ} distribution

+2D (M4I,MZ*) fitting method with floating Higgs mass and signal hypothesis

Profile Likelihood Ratio Method

- method used to provide $H \rightarrow 4\ell$ input to the combination of all ATLAS SM Higgs search
- four lepton mass used as discriminant variable to construct the likelihood

- = pdf parameters which maximize the likelihood L for a given μ $\lambda(\mu) = \frac{L(\mu, \vec{p})}{L(\hat{\mu}, \hat{\vec{p}})} \qquad \qquad \vec{p} = par parameters which maximize the maximize t$ values of μ and \vec{p} that maximize the L function
- signal and background probability density functions determined from MC
 - signal modeled by a relativistic Breit-Wigner + Fermi function
 - ZZ background modeled using a combination of Fermi functions

Profile Likelihood Ratio Method : Results

Conclusions

- H → ZZ →4 ℓ covers a wide mass range (from 120 GeV/c² to 600 GeV/c² with a large discovery potential
 ✓ gold-plated channel when Higgs is heavier then 200 GeV/c²
- Exclusion for high Higgs masses possible with few fb⁻¹

Back Up Slides

MC samples

Process	Filter acc	$\sigma_{LO}[fb]$	$\sigma_{NLO}[fb]$	Events	
$H[200] \rightarrow 4l$	0.753	12.39	20.53	50K	
$H[300] \rightarrow 4l$	0.782	7.65	13.32	10 K	signa
$H[400] \rightarrow 4l$	0.814	6.07	10.78	40K	
$H[500] \rightarrow 4l$	0.842	2.97	5.12	40K	
$H[600] \rightarrow 4l$	0.853	1.53	2.53	40K	

NLO cross section

Background

Process	Generator	FA	$\sigma[fb]$	Corrections		Events (K)
$q\bar{q} \rightarrow ZZ \rightarrow 4\ell$	Pythia6.3	0.219	158.8	+47.64 (qua	+47.64 (quark box, 30%)	
$gg \rightarrow Zb\bar{b} \rightarrow 2\ell b\bar{b}$	AcerMC/Pythia6.3	$[4\ell] \ 0.00942$	52000	+8500 (q	$q \rightarrow Z b \bar{b}$)	430
$gg \rightarrow Z b \bar{b} \rightarrow 2 \ell b \bar{b}$	AcerMC/Pythia6.3	$[3\ell] 0.147$	52000	+8500 (q	$q \rightarrow Z b \bar{b}$)	200
$gg, q\bar{q} \rightarrow t\bar{t}$	MC@NLO/Jimmy	$[4\ell] \ 0.00728$	833000			400
					M_{ZZ} (GeV)	K-factor
$qq \rightarrow ZZ$					[115,125]	1.15
$\sigma_{\rm eff} = \sigma_{LO} \cdot [BR(Z - $	\rightarrow II)] ² · Filter acc · (K +	$0.3) = 34.82 \cdot ($	$K(M_{77}) +$	0.3) fb	[125, 135]	1.21
					[145, 155]	1.25
					[155, 165]	1.34
$\mathbf{gg} o \mathbf{Zbb}$					[175, 185]	1.31
K = 1.42					[195, 205]	1.32
$\sigma_{\rm eff} = \sigma_{\rm LO}$	$BR(7 \rightarrow ee \mu \mu) \cdot Filter$	$racc \cdot K = 812$	9.1 fb		[295, 305]	1.40
etrerrerr					[395, 405]	1.52
					[495, 505]	1.84
					[595, 605]	1.81

Systematic uncertainties

- . theoretical uncertainties: PDF, QCD scales
 - accounted in the effective NLO cross section evaluation
- 2. experimental uncertainties: related to lepton reconstruction
 - lepton energy scale: uncertainty of $\pm 1\%$ on muon p_T and of $\pm 0.5\%$ on electron E_T
 - lepton energy resolution: Gaussian smearing with $\sigma_{ET} = 0.0073 E_T$ (energy) or $\sigma_{1/pT[GeV]} = 0.01 I/pT[GeV] \oplus 0.00017$ (momentum)
 - lepton reconstruction efficiency: discarded 0.2% of reconstructed electrons and 1% of reconstructed muons
 - material effects in electron efficiency: < 2% overall (can be measured using data)

3. uncertainty on LHC luminosity of 3%

provided by the ATLAS performance WGs

> Overall impact on the selection efficiencies of 2. and 3.: from 3.2% to 6.0% on the signal and from 3.1% to 5.4% on ZZ and Zbb backgrounds (tt contribution negligible)

Profile Likelihood Ratio Method

- MC distributions after event selection (Asimov data) fitted to derive pdf parameters
 - M_H fixed to its true value, σ_H floating in a ±20% range
 - background parameters floating within sensible ranges
- ZZ modeled using a combination of Fermi functions

$$f(M_{ZZ}) = \frac{p0}{(1 + e^{\frac{p6 - M_{ZZ}}{p7}})(1 + e^{\frac{M_{ZZ} - p8}{p9}})} + \frac{p1}{(1 + e^{\frac{p2 - M_{ZZ}}{p3}})(1 + e^{\frac{p4 - M_{ZZ}}{p5}})}$$

• Zbb contribution modeled by a Fermi contribution similar to the second term above

significance obtained from the median profile likelihood ratios for discovery $-2\ln\lambda(\mu=0)$

L					
(fb^{-1})	200	300	400	500	600
1	2.62	2.28	1.88	0.94	0.56
2	3.71	3.23	2.77	1.32	0.79
5	5.86	5.08	4.21	2.08	1.24
10	8.29	7.19	5.96	2.91	1.76
30	14.4	12.7	10.4	5.28	3.31