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e Introduction

>

\4

Theory calculations have not entirely kept pace with projected
experimental precision
Many important processes which need attention (Les Houches 2007)

—— Tree level is well under control (Born and real radiation)
—— Dipole subtraction is virtually automatic at NLO
—— Splitting functions are known to three-loops

— The virtual (loop) corrections are the sticking point, particularly

at high multiplicity and multiple scales
Traditional diagrammatic techniques are robust, well understood, but
not particularly efficient (large expressions until end)
Spinor helicity exploits gauge invariance
This reduces complexity of intermediate (final) expressions
When combined with cutting rules (generalized unitarity), we can get

at virtual corrections in a highly efficient manner

On-shell unitarity is built on the spinor helicity formalism




e Spinor helicity... brief background (massless)

> 1966: Bjorken and Chen, Phys Rev 154 1335
> 1988: Berends and Giele (mostly gluons)
> The Ubiquitous Photon [OUP 1990, Gastmans and Wul]

Multiparton amplitudes in gauge theories [Phys Rept 200 301 (1991)]

ut(pi) = v(pi) = ;)

(i) = (7 157) = u—(pi)us(p;) (i) =[i7]57] = us(pi)u (pj)

= |i*)

(if) = =(i), il = —[3i] (v 1 (kyul] = 2(ik)[1;]
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> The subject seemed to be closed... until 1995 with an observation about
gluon amplitudes in N/ = 1, and N = 4 SUSY by Bern, Dixon, Dunbar, and

Kosower



e Spinor helicity... continued

> Color ordering drastically simplifies calculations

—— Strip color factors, use distinct cyclic orderings of external legs
—— Particularly useful in gluon calculations (unphysical)

—— Spurious singularities much easier to find (not true traditionally)
—— Manifest gauge cancellations makes for compact expressions

—— Color structure and gauge invariance are separate issues

> Twistor inspiration:
—— if p; € R, then uy(p;) are related
—— if p; € C, this is not true generally! Think % and y
—— This gives us new non-zero three-vertices

> Recursion relations at tree level

— Ap —ZAr+1P2 n— r—l—l

G shlft e - %mm T

—— An(z) — 0 as z — oo (meromorphic)

Z ik
2<w (]

> Yields very simple expressions for certain helicity combinations (MHV)
> Sew diagrams together to get all tree level expressions



o Sewing example 0 — GgQQ®

o

Two tree (Born) level diagrams
The process we have in mind is bbA®) production (not in SM)
Discovery channel, lots of neat phenomenology
We can check the method with tth/bbh calculations that are already available
[Reina, Dawson, and Wackeroth PRD 65 053017 (2002)],
[Dawson, Jackson, Reina, and Wackeroth Mod Phys Lett A21 89 (2006)]



o Sewing example 0 — GgQQ®

We can cut these into three new vertices...

Lets look at the first diagram (we label these tree level Bél) and BSQ))



o Sewing example 0 — GggQQ® for tree level Bél)

0™



e Sewing example 0 — §gQQ® (+ — +—) for tree level B

00



e Sewing example 0 — §gQQ® (+ — +—) for tree level B



o 0 — gqQQ tree level helicities (there are four)
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qaG(p12) QQG(p12) QQ%(ps) qaG(p12) QQG(p12) QQ%(ps)
-+ + + - - —+ -+ + + 4 - ——
M&T“’ -+ - + -+ —+ -+ - + -+ +-
-4 - - —+ ++ -+ + + - - +-—
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Now we just need expressions for these vertices, and to connect them with
propagators. But what about these helicity violating terms? How do we account

for masses?” What do you mean by massive ‘helicity’?



e Spinor helicity... with masses

—— Massive spinors can be built (light-cone projection)
—— Add a massless reference spinor ¢ (take from our process)
— [Kleiss and Stirling NPB 262 235 (1985)], [Ozeren and Stirling Eur Phys J C48 159 (2006)] and

[Schwinn and Weinzierl JHEP 0505 006 (2007)]

K =m? kK =k — %q“, (k') =¢* =0
_ ~ {ql(p, +m) ~ (p, —m)ld]
u+(p1) — <q1> v—(pQ) — [2Q]

_  lal(p, +m) (P, —m)lg)
u—(pl) — [Ql] U+(p2) — <2q>

> We now have the building blocks needed for generalized unitarity
> What do the vertices look like?



o Vertices (helicity violating in red)
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Generalized (Perturbative) Unitarity

[Britto, Cachazo, Feng, Witten, Dixon, Forde, Kilgore, Kosower, Ossola, Papadopoulos, Pittau,...]

v VvV V V

Unitarity and Renormalizability are gauge theories

Cutkosky rules (largest-time equation)

Disc A = A" A (optical theorem, imaginary part across branch cut)
Very limited applications

—— Optical theorem is about 2 — 2 forward scattering
—— No interesting resolved final states

M =3 "CYDg + ) CECE + ) C3B5 + > CTAG + Ry
k k k k

If we cut a diagram twice (cut two propagators in two different ways), we
find the discontinuity in two ways and can solve for the box scalar integral

coefficient directly
Box diagrams are the easiest (contrast to traditional methods)

—— Several boxes can share a given branch cut, which is resolved by the

sewing procedure
The other integral coeflicients take some work, but can also be obtained in

this manner



o Our process (0 — gqQQ®), sample diagram (49 others)

g
t
000¢
q
iM =g" (T“T”T“T”)i% x

Doy’ U1 U3 {/ d*l (I3 +mQ)(75)(l345 +mq) (I+mg) 1 }v4

T Y712
(27)4 134 — mj 1345 — M3 2 —mg "3

Amplitude is first step, need to interfere for physics (and reduction)...



e Loops... Old (Part of NLO calculation)

(M(O)MII)) — T11 -+ T12 -+ T21 —+ T227 jUSt Bél,Q)
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Tensor integrals need to be reduced to scalar integrals...



e Loops... Old (4D Passarino-Veltman reduction)

Ao(ma) = (2ﬁu)4n/ A
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e Loops... Get harder and harder (especially boxes)

Decompose into coefficients

D, = pi1uDi1 + p2u D12 + p3,. D13
D, = p1upivDa1 + paup2u D22 + p3,up3n D23
+ p1uPp2vD2s + p1up3vDas + p2,.p30Das + guw Doz
Do = p1up1vp1pD31 + p2up2.92p D32 + p3up3up3p D33
+ {p1p1p2}uvpDsa + {p1p1p3}tuvp Dss + {p1pap2}tuvp Das
+ {p1p3ps}uvpDs7 + {p2p2ps}tvpDss + {p2psps}uweDsg
+ {p1p2p3}uvp D310 + {P19}uvp D311 + {p29} o D312 + {p39}uvpDsis

Dyvpo = -

{pipjpk}pbl/p = Z Po(i)uPo(j)vPo(k)p {pz’g}p,yp = PiuGup + PivGup + PipGuv
o(2,7,k)



e Loops... and they have stability issues

P PPz Dips3
X=1\| pip2  p3 p2p3 Gram determinant (det X # 0)

p1-p3s  p2-p3s  pa

Py D11 R2o
p’; D,=X D12 — Ra1
p3 D13 Rao
1.
Rao = 5 _C()(l? 374) o 00(27374> + (7713 _ m% — Q%)DO]
1.
Ra1 = 5 _CO<17 274) o 00(17374> + <m§ o mg o Q% + QS)DO]
1, 2 2 2 2
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1—1
@1 =0, Qi=)» p;
j=1

Gram determinant (can) introduce non-physical singular points, high complexity,

error prone, diagrams talk to each other



o Loops... New
MP =>"CiD§+) C3CE+> C3Bs+ Y CrA;+ Ry
k k k k

> Reconstruct coefficients from unitarity cuts (with present propagators)

% — (2m)6 P (p* — m?)
P2 —m

=y |
n| (12 —m% +ie] [l% —m% +ie] [Z%Q —m% +ie€] [@23 —miﬂ'e]

(27)
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1
= = Z f(), completely determines the loop momentum

> We find following equation to solve for our box integral coefficient
2 2 2 2 2 2 2 2
{17 =mi, 11 =m3, Ili2=m3, lis3=my},

lj: = ap1 + ﬁp2 + ops3 T pP7 P'u — ,L-e,ul/pa Pi1v P2p P30, find Q, 67 ag, P

1
— Ccy = §;A1A2A3A4




o Our loop process (0 — gqQQ®), the orphan (for check)
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o 0 — gqQQP Bél) loop helicities (independent)
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Comparison of methods

Passarino-Veltman

—— Well understood and implemented for years

—— Largely automated

—— Complex, unwieldy, unstable (as is, can be improved)
Unitarity

—— Drastic drop in complexity of expressions

—— Utility in massive calculations? Massless is much easier...
—— Easy (straightforward) to automate [BlackHat, Rocket, ...]
—— Singularities are under better control numerically

(ij) /i

Timing and interest in theory community will be deciding factor

—— Diverge like

Results are paramount at this point
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Outlook

Still have triangles, bubbles, tadpoles, and rational terms
Challenging, but understood (not presented here)

Numeric checks between different methods are still underway

Proof of concept calculation for massive process

Still some concern about speed of implementation at tree level

Adding in color slows calculations
Could be solved with representation of spinors?
Clearly, still needs to be optimized for MC work

Strength is in wide applicability to NLO processes
Automation will lead to low “time to curves”
Worst case, good for new signal processes

Generalized Unitarity < New Tool for Phenomenology




