Outstanding Issues of HTS for High Quality Magnets

May 21-23, 2014

1st workshop on Accelerator magnets in HTS at DESY

H. Maeda and Y. Yanagisawa RIKEN, Yokohama, Japan

NMR Facility

CONTENTS

- 1. Introduction
- 2. Magnetic field distortion and temporal magnetic field drift due to the screening current
- 3. Effect of screening current on the characteristic of LTS/Bi2223 NMR and LTS/REBCO NMR

Introduction

Gap between HTS conductors and HTS magnets

It is necessary to develop HTS magnet technology

Magnet technology

LTS magnets

- Stability
- AC loss
- Quench protection
- Structure
- Magnetic field
- Cryogenic engineering

HTS magnets

- Degradation in the coil performance due to delamination(REBCO)
- Screening current-induced magnetic field (HTS)
- Protection against thermal runaway(HTS)
- Structure
- Magnetic field
- Cryogenic engineering

Magnetic field distortion and temporal magnetic field drift due to the screening current

a. Basic phenomena of the screening current-induced magnetic field

Screening current-induced magnetic field for LTS magnets

Screening current-induced magnetic field for HTS magnet

Hysteresis effect of the screening currentinduced magnetic field for a REBCO magnet

@4.2K

ID 18mm OD 45mm 25mm Solenoid

Major problems:

- Hysteresis effect
- Reduction in the central field
- Field drift with time

Y. Yanagisawa et al., IEEE Trans. Appl. Supercond. 20, 744-747(2013)

 $|B_{\rm s}/B_{\rm c}| = 15\%$

Comparison between Bi2223 and REBCO

Screening current-induced magnet field for a REBCO coil is 5-fold larger than that for a Bi2223 coil

$$B_c = Ja_1F(\alpha,\beta)$$

$$a_1 = 18mm$$
; $F = 10.1 \times 10^{-7}$: Shape factor of the solenoid

The central magnetic field is the same, while the shape is different

b. Remedies for the screening current-induced magnetic field

Current sweep reversal method

- Several % of current sweep reversal is necessary for HTS magnets, while 0.2-0.5% for LTS magnets.
- The magnet should endure a current of 105% of the operation current

<u>Y. Yanagisawa</u> et al., Physica C 469, 1996-1999(2009)

Temperature change

Y. Yanagisawa et al., Adv. Cryo. Eng. 1434, 1373-1380 (2012)

Scribed multi-filamentary REBCO conductor

The screening current-induced field is remarkably reduced, if a scribed REBCO conductor is used

Bi2212 multi-filamentary round conductor

Bi2212 round conductor

33.8T coil, developed in NHMFL

If multi-filamentary/ twisted Bi2212 round conductor is used, the screening current-induced magnetic field will be negligible as for LTS coils.

U. P. Trociewitz, et al. *Appl. Phys. Lett.* 99, 202506(2011)

D. C. Larbalestier et al., "A transformative superconducting magnet technology, 2013.

Effect of screening current on the characteristic of LTS/Bi2223 NMR and LTS/REBCO NMR

a. Necessity of the LTS/ HTS NMR magnet

Two available HTS conductors

Bi2223 conductors

Silver matrix

Superconducting multi-filaments

4 mm

- A: Long conductor 1 km
- D: Low mechanical strength
 - →Lower current density
 - → larger magnet

- A: High mechanical strength
 - → High current density
 - → compact size magnet
- D: Shorter length 100-200m

Technical problems for an NMR magnet

- Strong magnetic field intensity
- Spatial field homogeneity 1ppb/5mm dia. cylinder
- Temporal field stability 0.1ppb

Legendre Polynomials

$$B_z = B_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + - -$$
 Axial error component
$$+ b_1x + b_2y + b_3zx + b_4zy + b_5xy + b_6(x^2 - y^2) + -$$
Radial error component

Room temperature shim coils & iron shims <1ppb

Target: 1ppb

Superconducting shim coils(z,z²,x,y,zx,zy,xy,x²-y²) < 10 ppm

Field correction coils (z² and z⁴ are canceled) < 500ppm

b. Comparison between LTS/ Bi2223 NMR magnet and LTS/REBCO NMR magnet

World's first LTS/Bi2223 NMR magnet and LTS/REBCO NMR magnet(400-500MHz)

 $(^{1}H, ^{13}C, ^{15}N)$

Temporal field drift due to screening current for an LTS/REBCO NMR is >20-times steeper than that for an LTS/Bi2223 NMR

Spatial distribution of the magnetic field

LTS/REBCO NMR (500MHz, 11.7T)

The field generated by the field correction coil is reduced by 27% due to the LTS/REBCO coil, resulting in excessive residual z² component. Therefore, additional iron shims were required.

Degradation in the superconducting(SC) shim coil performance

The SC shim coil performance is remarkably degraded due to the screening current induced in the HTS coil, especially for REBCO

Axial SC shim coils

z and z^2

- LTS/Bi2223→40% of the design
- LTS/REBCO→ 20% of the design

Radial SC shim coils

 $x, y, zx, zy, xy, and x^2 - y^2$

- LTS/Bi2223
 →20-40% of the
 - design

LTS/REBCO

→ < 5% of the design</p>

Difficult to make a field correction!

	LTS NMR	LTS/Bi2223 NMR	LTS/REBCO NMR
NMR resolution	<1Hz(2ppb)	0.7Hz(1.4ppb)	15Hz(30ppb)
NMR sensitivity S/N	>600	512	28

Resolution
Signal
Sensitivity(S/N)

NMR spectrum

20-fold lower resolution and sensitivity

NMR spectra for a protein

LTS/Bi2223 NMR magnet

Nearly the same quality as conventional NMRs

LTS/REBCO NMR magnet

The number of the available NMR measurement is limited

Collaboration between NHMFL and RIKEN on a 400 MHz LTS/Bi2212 NMR magnet

<u>NHMFL</u>

Bi2212 inner coil

- Develop and evaluate an LTS/Bi2212 NMR magnet in collaboration between NHMFL, coil fabrication, and RIKEN, NMR measurement.
- The experiments in RIKEN is planned to be conducted in 2015.

RIKEN

NMR probe

Comparison of NMR resolution and sensitivity

	LTS NMR	LTS/Bi2223 NMR	LTS/Bi2212 NMR	LTS/REBCO NMR
NMR resolution	<1Hz(2ppb)	0.7Hz(1.4ppb)	XXX	15Hz(30ppb)
NMR sensitivity S/N	>600	512	XXX	28

NMR spectrum

Summary

- Effect of screening current induced magnetic field on the performance of high quality magnet such as NMR, MRI and accelerator is enormous.
- It can be effectively suppressed by current sweep cycling and temperature change cycle, in addition to using adequate conductor.
- The quality of the NMR spectra achieved by LTS/Bi2223 NMR magnet is nearly the same as that by LTS NMR magnet.
- NMR spectra achieved by the LTS/REBCO NMR magnet is 20-fold broader than those by LTS NMR. Therefore, available NMR measurements are rather limited.

Acknowledgement

This work is partially supported by JST

RIKEN

Dr. T. Yamazaki

Dr. M. Takahashi

Dr. X. Jin

JASTEC

Dr. M. Hamada

Dr. K. Kominato

NIMS

Late Dr. T. Kiyoshi

Dr. S. Matsumoto

JEOL RESONANCE PRESONANCE

Mr. H. Suematsu

Chiba University

Prof. Hideki Nakagome

Sophia University

Prof. T. Takao

Mr. S. Iguchi

Why higher magnetic field is required in NMR?

Protein sample

NMR magnet

NMR sample

Frequency

0.94T (40MHz)

11.75T(500MHz)

NMR resolution and sensitivity (S/N) are remarkably enhanced with the increase of the magnetic field

Numerical simulation of the screening current induced magnetic field

■ Current diffusion equations for each current element

$$J_{m,i}(t+\Delta t) = J_{m,i}(t) + \frac{2\pi\Delta t}{\mu_0 d} \sum_{i=1}^{N} K_{ij}^{-1} \left[E_{m,j}(t) + \nabla_z \phi_m(t) - y_j \dot{B}_{r_m}(t) \right] \quad (m=1,...,M; i=1,...,N)$$

■Relation between transport current and current density

$$I(t) = \frac{2ad}{N} \sum_{i=1}^{N} J_{m,i}(t) \quad (m = 1,...,M)$$

■ Power law *E-J* characteristics

$$E_{m,j} = E_c (J_{m,j} / J_{cm})^n \quad (m = 1,..., M)$$

 $\blacksquare J_c$ -B characteristics

$$J_{cm} = J_{c0} \frac{B_0}{B_m + B_0}$$
 $(m = 1, ..., M)$

Convergence

$$\left| \frac{J_{m,i}^{(k+1)}(t) - J_{m,i}^{(k)}(t)}{J_{m,i}^{(k+1)}(t)} \right| < \varepsilon$$

Bottleneck of high-field NMR magnets

RIKEN Center for Life Science Technologies

(21.9T)

(14.1T) (16.5T) (18.8T)

(21.8T)

Temporal stabilization of the magnetic field

2 High temporal stability of the local magnetic field is achieved by using a ²H field-frequency lock system <1ppb</p>

Target: 0.1ppb

Current **W**

