

Roebel cable industrial optimization -General Cable Superconductors

Dr Nick Long, Robinson Research Institute, Victoria University of Wellington, New Zealand

WAMHTS-1, February 2014

Acknowledgements: Rod Badcock, Kent Hamilton, Chris Bumby, Marc Mulholland, Zhenan Jiang

Contents

- Introduction to Roebel
- Design of strands
- Punching strands
- Testing $I_{\rm c}$
- Cable assembly
- Cable $I_{\rm c}$
- Mechanical properties
- Insulation and reinforcement

Cable attributes for magnet applications

- High current; uniform I_c
- Available in long lengths
- \$/kA-m
- Stability (risks of quench, equal current sharing among strands)
- Mechanical behaviour
 - $I_{\rm c}$ stress, transverse and longitudinal
 - Bending radii
 - Coil manufacture; potting
- Manageable AC losses

HTS Roebel cable

- Started R&D at IRL in 2004
- Commercialised through General Cable Superconductors •

Goals

- Develop long length Roebel cable manufacture
- Prove applications in high current and/or AC machines
 - 150 MW generator (Siemens)
 - 1 MVA Transformer (Robinson Research Institute (ex IRL))

What is HTS Roebel Cable?

- A high capacity winding cable from coated conductor
- Continuously transposed

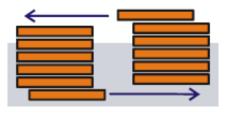


Photo courtesy of Siemens

Cables are labelled (no. of strands) / (strand width)

Design of strands/cable

- Existing designs are a compromise
 - Use the wire which was available
 - 12 mm SuperPower
 - 10 mm Fujikura and STI (from 2013)
 - Keep tool piece manufacture simple
 - Minimise problems in automated winding
 - Minimise mechanical problems

Design of strands

Figure – Roebel strand

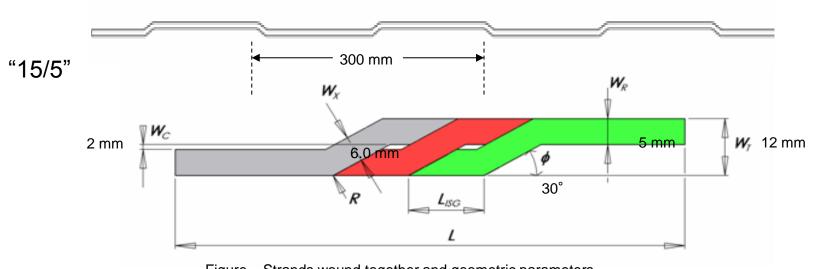
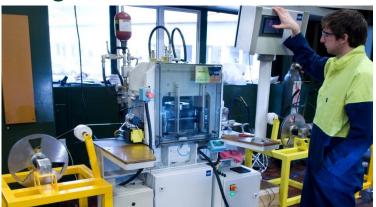
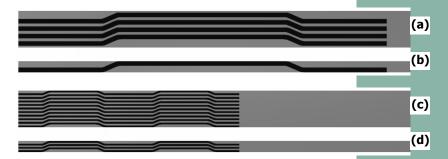



Figure – Strands wound together and geometric parameters


	Parameter	Name	2 mm Cable	4.5 mm Cable	5 mm Cable
	L _{TRANS} (=2L)	Transposition length	90 mm	300 mm	300 mm
	W _R	Strand width	2 mm	4.5 mm	5 mm
	W _X	Crossover width	1.7 mm	5.0 mm	6.0 mm
-	SUPERCONDU	JCTORS			

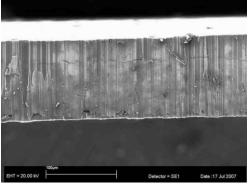
Strand manufacture

Punching

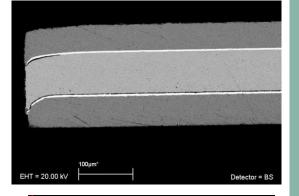
Automated multi-strand production

Formation of Roebel punched strands in 40 mm and 12 mm wide feedstock material.

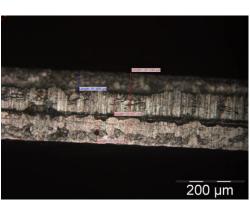
- (a) 4 x 5 mm strands in 40 mm wide material,
- (b) 1 x 5 mm wide strand in 12 mm wide material,
- (c) 10 x 2 mm strands in 40 mm wide material,
- (d) 3 x 2 mm wide strands in 12 mm wide material.



Wire demonstrated: AMSC, SuperPower, Fujikura, STI

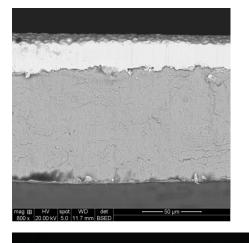


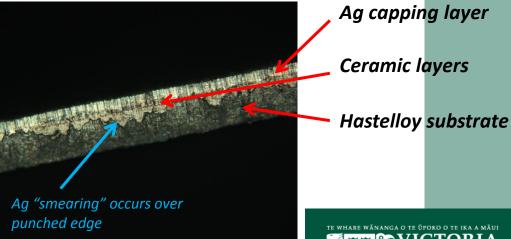
Quality of punching: AMSC wire

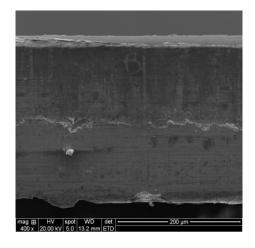

Electroplated copper/NiW

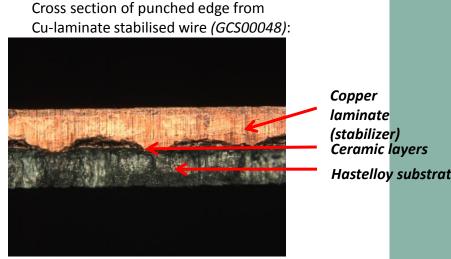
Electroplated copper/NiW

AMSC 3 ply SS/NiW/SS

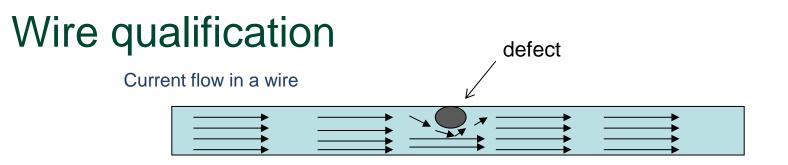

AMSC 4 ply Cu/2x NiW/Cu

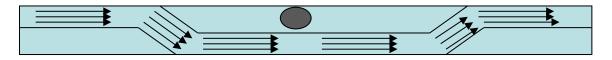


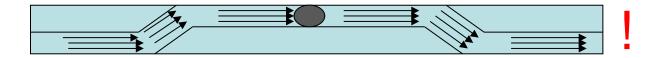

Fujikura: Silver-stabilised punched strand



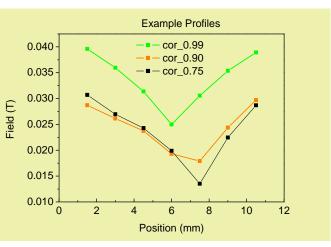
Fujikura Cu-laminated wire – punched strand




Total thickness: ~200µm


Hastelloy substrate

Current flow in a Roebel strand


Wire qualification

- Scan wire magnetically (penetrated or remanent field)
- Quantify uniformity using statistical correlation with an ideal magnetic profile

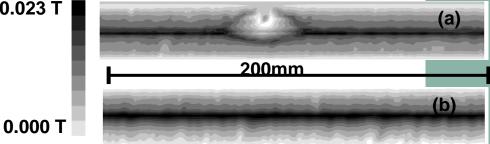
$$Corre[X,Y] = \frac{\sum (x-\bar{x})(y-\bar{y})}{\sqrt{\sum (x-\bar{x})^2 \sum (y-\bar{y})^2}}$$

Where $|Correl| \le 1$

X is a dataset representing calculated field $Y\{y_1...y_i\}$ is magnetic data across tape

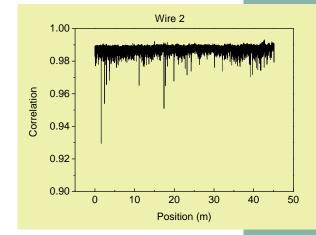
0.023 T

Correlation along


a length of YBCO

specified for input

wire, a minimum


Correl can be

wire

We use continuous scanning of the Remanent magnetic field to assess tape quality (a) tape with a known defect, and (b) tape with only small scale variability.

Some wire is extremely good !

$I_{\rm c}$ measurement of strands

Spiral racetrack former for testing strands up to length 30 m.

- Punched strands are moisture sensitive
- Heat in dry nitrogen only

Sample #	Length	Tape transport Ic	Min{Correl}	Strand transport Ic
	(m)	(A/cm)		(A/cm)
1	27	248	0.98	232
2	27	213	0.89	200
3	27	213	0.85	239
4*	27	265	0.94	191
5	27	263	0.9	236
6	27	329	0.88	310
7	27	215	0.9	243
8	27	322	0.9	309
9	27	363	0.94	334
10*	27	400	0.78	307

Table 1. Example performance of selected wire and 5mm strands

Summary of strand performance

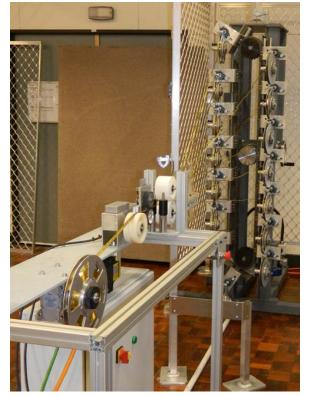
- $(J_{\rm e} \, {\rm strand}) \, / \, (J_{\rm e} \, {\rm wire}) \sim 90-95\%$
- High minimum value of *Correl* is necessary but not sufficient condition

 $\rightarrow \Delta I_{\rm c}$ also needs to be considered

→ Length of defect important

→ Scaling to low T, defects look like a cross sectional loss of conductor

- Can we mitigate low Correl values?
 - Probably not!



Cable assembly

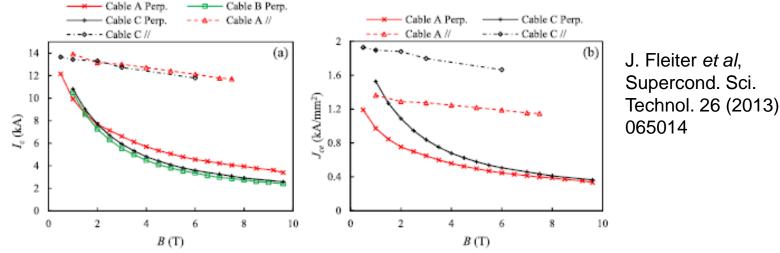
Illustration of the assembly process

Automated planetary wind system for 15/5 cable

Assembly issues

- Long length registration of crossovers
 - Need high precision for each transposition length in the punching process
 - Need tension control on strands in winding
 - Difficult to simulate (relevantly) with low cost dummy cables
 - Mechanical properties
 - Camber

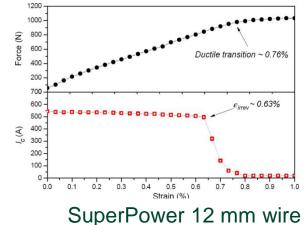
$I_{\rm c}$ measurement of cables @ 77 K


Cable details	Cable $I_c(A)$		
	Design $I_{\rm c}$	Measured	Computed
5/2	252	203	220.1
9/2	426	318.8	339.1
9/2	426	341.9	359.1
15/5	1454	1100	1033
15/5 SRC0024	1616	1010	1109
15/5 SRC0027	2093	1410	1372

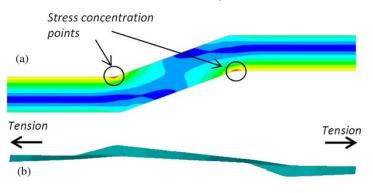
RRI – 1 MVA Transformer

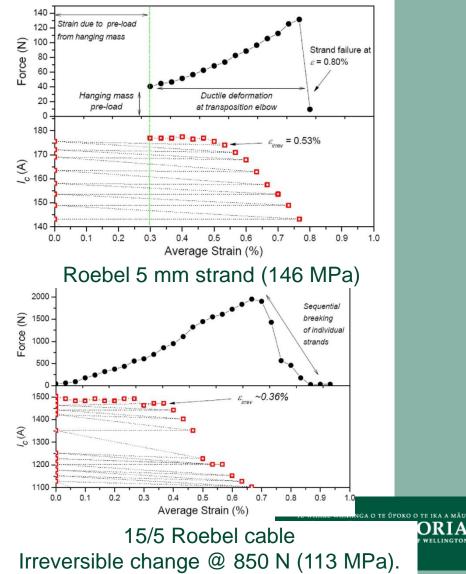
- Measured $I_{\rm c}$ has been close to expected $I_{\rm c}$
- For short length cables accurate I_c measurement is difficult
- At 77 K there are strong self-field effects

$I_{\rm c}$ measurement of cables @ 4.2 K


Figure 5. (a) Critical current measured on RACC cables (markers) as a function of applied field. The I_c was measured using the 0.2 μ V cm⁻¹ criterion. (b) J_{ce} of cable A and C in parallel and perpendicular field.

From manufacturing perspective cables work as advertised


- Measured I_c close to expected I_c (taking into account self-field)
- These cables used both 'CF' (Cable A) and 'AP' (B + C) Superpower wire
- Actual strand I_c @ 4 K values were not measured


Mechanical properties – longitudinal stress-strain

Irreversible change @ 840 N (700 MPa).

Von Mises stress @ 0.4% strain

Mechanical properties

- Roebel shape weakens structure
 - 1/6 reversible strain limit of straight wire
- Mitigate through
 - Potting
 - Reinforcement and wrapping
- Transverse stress effects
 - Again get stress concentration
 - Up to 45 MPa without I_c degradation (15/5 cable CERN)
 - Degradation at 10 MPa, (10/2 cable with insulated strands -EPFL)

Wrapped insulation

- Nomex wrapped 12 mm wide cable
- Need to include a reinforcing Hastelloy or stainless steel tape
- Nomex adds 200 microns total thickness

Roebel cable ready for testing at Siemens Corporate Technology, Germany.

Winding and Potting coils

- Strands need to move during coil winding
 - Tight insulation wrapping not advisable
- Coated conductor has known interfacial mechanical weakness which can cause problems in potting
 - This applies to Roebel as well
 - We have damaged cable by using Stycast
- Getting complete void filling needs consideration for large coils

Conclusions

- Manufacturing procedures in place for long lengths
- *I*_c performance
 - Cables preserve tape performance (~90%)
- Quality control
 - Measuring magnetic Correl is relatively easy
 - Measuring strand I_c is time consuming and adds risk
- Cables up to 25 m (15/5 cables) delivered to customers
 - We have wound up to 40 m length
- Cost ultimately dominated by wire cost
- AC loss well characterised (not discussed here)

Thank you for your attention!

