Conductor on Round Core (CORC) cable development for accelerator magnets

Danko van der Laan

Advanced Conductor Technologies & University of Colorado Boulder, Colorado, USA

Fraser Douglas Advanced Conductor Technologies, Boulder, Colorado, USA

Xifeng Lu University of Colorado, Boulder, Colorado, USA

Ulf Trociewitz and David Larbalestier

Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, FL 32301, USA

Advanced Conductor Technologies LLC www.advancedconductor.com

WAMHTS-1, Hamburg, Germany, May 22, 2014

Outline

- **1. Introduction to ACT and CORC cables.**
- 2. CORC cables for fusion magnets.
- 3. Mechanical properties of CORC cables.
- 4. CORC cables for high-energy physics magnets.
- 5. Production of long, high-quality CORC cables.
- 6. CORC cable performance projections.

Advanced Conductor Technologies LLC (ACT)

Founded in June 2011 as a spin-off from the University of Colorado and the National Institute of Standards and Technology (NIST)

Advanced Conductor Technologies focuses on the commercialization of high-temperature superconducting Conductor on Round Core (CORC) cables for high-density power transmission and high-field magnets.

Personnel at ACT:

- 1. Danko van der Laan, Ph.D.
- 2. Annemiek Kamphuis, M.Sc.
- 3. Fraser Douglas Ph.D.

New location:

3082 Sterling Circle Unit B, Boulder, CO 80301 (2851 SF)

Programs supporting CORC cable development

Advanced Conductor Technologies:

1. Department of Energy – Office of Fusion Energy Sciences

- CORC cable for fusion magnets
- Phase II STTR (2 years April 2013 to April 2015)
- Subcontractor is MIT (Joe Minervini, Phil Michael and Leslie Bromberg)

2. Department of Energy – Office of High Energy Physics

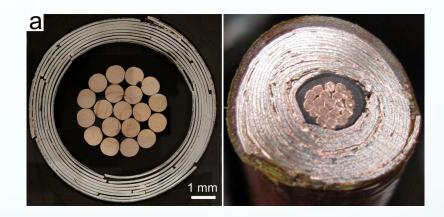
- CORC cables for accelerator magnets
- Phase II SBIR (2 years April 2014 to April 2016)
- Subcontractor: NHMFL (David Larbalestier and Ulf Trociewitz)

3. Navy

- He-gas cooled CORC power transmission cables
- Phase II STTR (2 years February 2014 to January 2016)
- Subcontractor is CAPS (Sastry Pamidi and Chul Kim)

University of Colorado:

- 1. Department of Energy Office of High Energy Physics
 - support for high- $J_{\rm e}$ CORC cable development
 - Base program (3 years April 2012 to March 2015)



Conductor on Round Core cables

CORC cable principle:

Winding many high-temperature superconducting YBCO coated conductors from SuperPower in a helical fashion with the YBCO under compression around a small former.

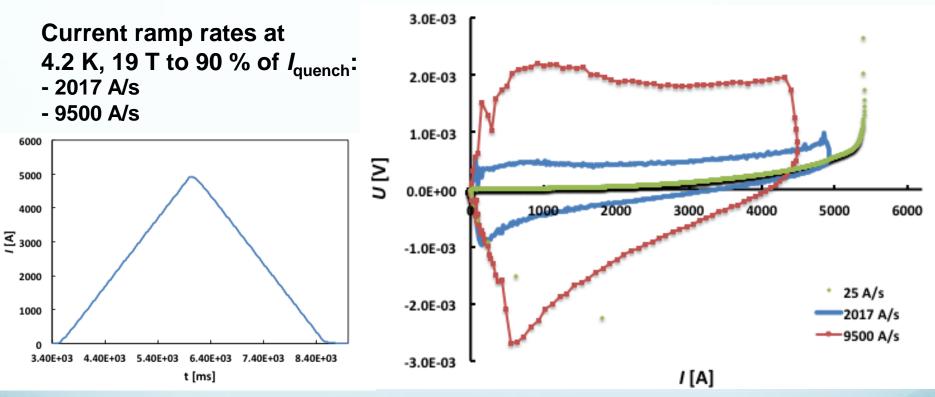
Benefits:

- Very flexible
- Very high currents and current densities
- Mechanically very strong
- Minimum degradation from cabling (< 10 %)
- Current sharing between tapes possible



Cables tested at the NHMFL in 19.8 T background field: 52 YBCO coated conductors, 17 layers, **cable O.D. 7.5 mm**:

Advanced Conductor Technologies LLC www.advancedconductor.com


ACT: DOE – Office of Fusion Energy Sciences Award DE-SC0007660, NHMFL: DOE, NSF, agreement DMR-0654118, and the State of Florida

Will current distribution become inhomogeneous in cables with many layers at high current ramp rates?

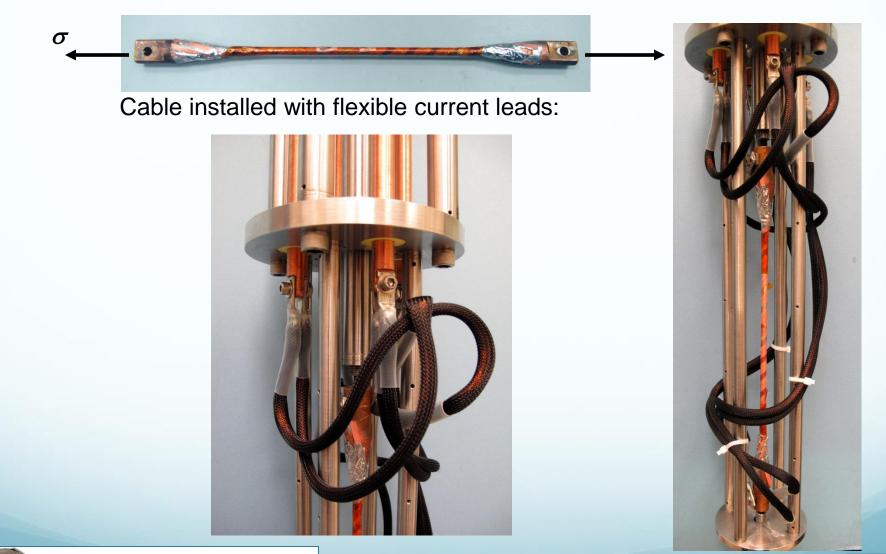
Cable: 52 CC in 17 layers.

No effect of high current ramp rates!

Advanced Conductor Technologies LLC www.advancedconductor.com

Phase I STTR DOE - Fusion Energy Sciences Award DE-SC0007660

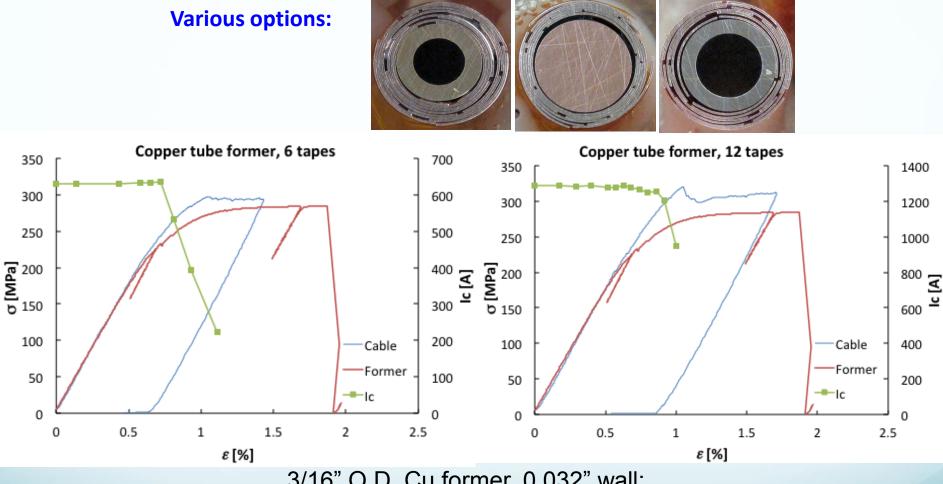
Ramp rates of 68,000 A/s at 19 T


Advanced Conductor Technologies LLC www.advancedconductor.com

ACT: DOE – Office of Fusion Energy Sciences Award DE-SC0007660, NHMFL: DOE, NSF, agreement DMR-0654118, and the State of Florida

PSIC

Testing of CORC cables under axial stress



Current leads can handle >1500 A at 76 K.

Testing of CORC cables under axial stress

3/16" O.D. Cu former, 0.032" wall:

6 tapes in 2 layers: $\sigma_{irr} = 228 \text{ MPa}$ 12 tapes in 4 layers: $\sigma_{irr} = 277 \text{ MPa}$



Testing CORC cables under transverse compression

Compressive stress test facility:

- maximum load 10,000 lbs, or 44.5 kN.
- anvil lengths 50 mm or 100 mm.
- testing at room temperature and 76 K.
- sample current exceeding 2 kA.

Phase II STTR DOE - Fusion Energy Sciences Award DE-SC0007660

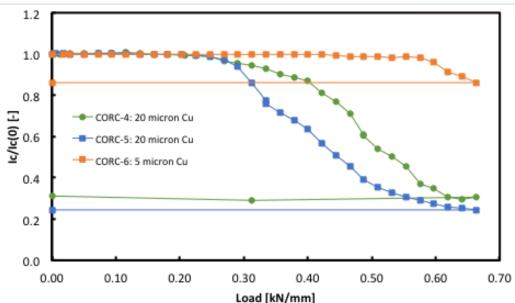
Transverse compression test results (Cont.)

CORC cables:

- solid stainless steel former
- former O.D. 4.8 mm
- 3 layers

Anvil length: 5 cm.

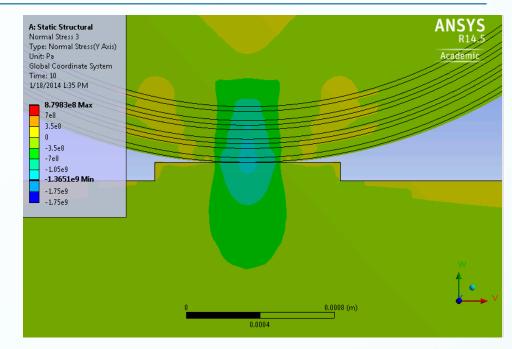
CORC-4:


9 tapes, 0 mm gap, **20 μm Cu CORC-5:**

9 tapes, 0.5 mm gap, 20 μm Cu CORC-6:

9 tapes, 0 mm gap, 5 μ m Cu

Decrease in I_c depends on gap size and copper thickness.



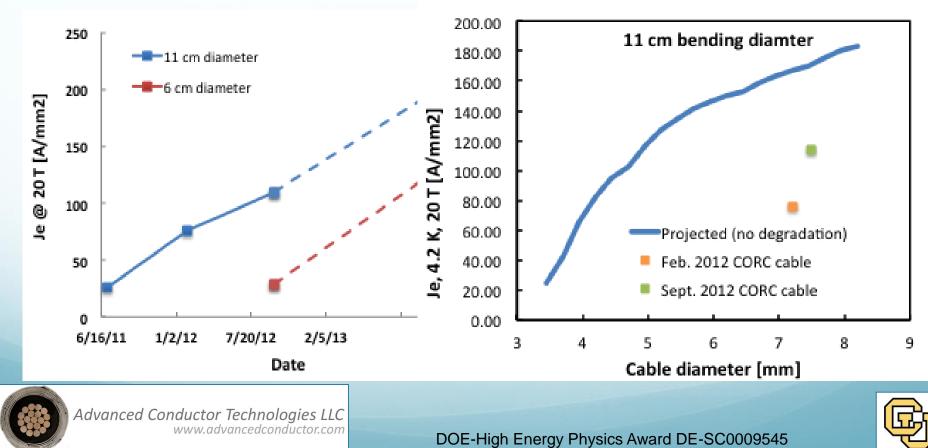
Modeling of transverse compressive stress

Maximum compressive stress at 7,500 lbs with 5 cm anvil: 1340 MPa

DSEC

0.5 mm-wide imprint in 5 cm long brass anvil after 7,500 lbs load suggests a stress of 1.3 GPa!

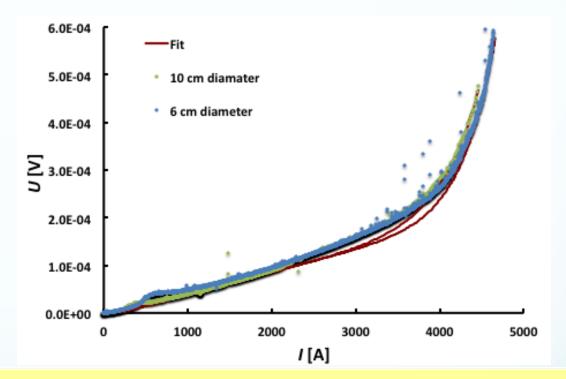
Advanced Conductor Technologies LLC www.advancedconductor.com


Phase II STTR DOE - Fusion Energy Sciences Award DE-SC0007660

Collaborators: David Larbalestier and Ulf Trociewitz (NHMFL)

Goal 1: J_e of > 300 A/mm² at 20 T at 11 cm bending diameter using basic tape.

Goal 2: improve CORC flexibility : $J_e > 200 \text{ A/mm}^2$ at 20 T and at 6 cm bending diameter.


Status at beginning of program (2013):

CORC J_{e} > 100 A/mm² at 20 T and 6 cm diameter

Cable:

- 37 YBCO CC, 14 layers
- cable O.D. 6.4 mm

 I_c = 3989 A (10 cm) 3967 A (6 cm)@ 4.2 K, 15 T (J_e =122 A/mm²) Expected J_e = 103 A/mm² @ 4.2 K, 20 T

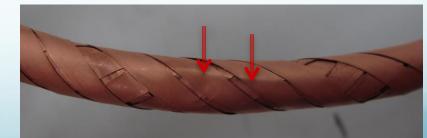
No degradation when bending from 10 cm to 6 cm: $J_e(20T) = 103 \text{ A/mm}^2!$

Advanced Conductor Technologies LLC www.advancedconductor.com

DOE - High Energy Physics Award DE-SC0009545

Room for improvement

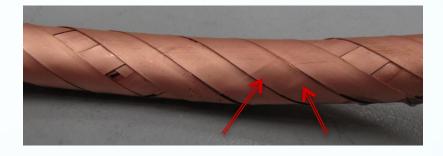
$I_{\rm c}$ = 5021 A @ 4.2 K, 19 T

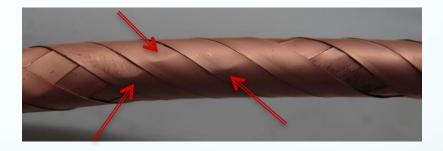

During cable inspection after test at 19T:

Many damaged tapes in outer layers due to cable bending!

Caused by loose winding pack.

Winding pack needs to be controlled:

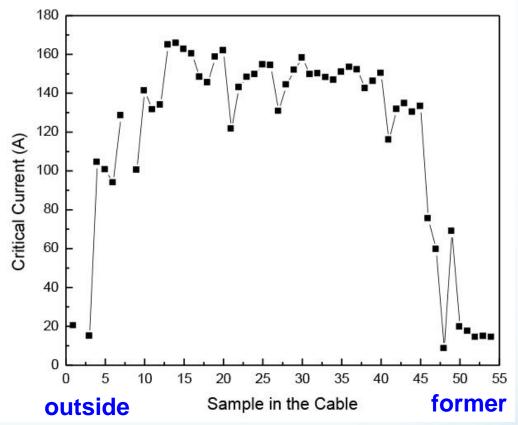

=> Cabling machine is needed.



Advanced Conductor Technologies LLC www.advancedconductor.com

DOE - Office of High Energy Physics grant DE-FG02-12ER41801

Performance of tapes extracted from CORC cables


52 tape CORC cable:

- 3 mm former
- wound into 11 cm diameter
- tested at 19 T: $I_{\rm c}$ was 50 % of projected value.
- *I*_c(76 K) after test 3300 A

Extracting all tapes from cable and measure I_c at 76 K:

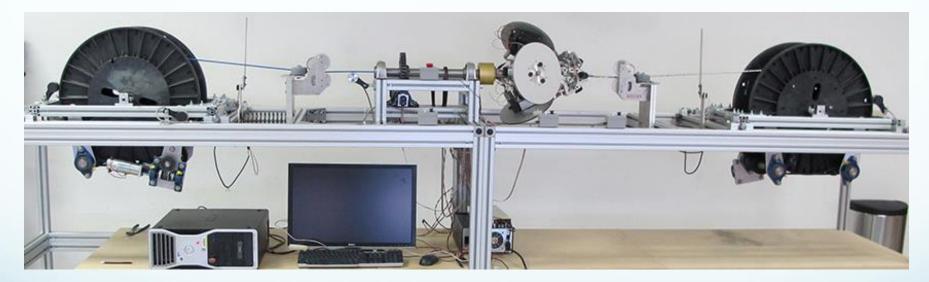
Outer layers show degradation due to tape kinking.

Inner 4 layers show large degradation due to small former.

About 80 % of the tapes near 100 %

Sum of tape I_cs 6,100 A!

Low cable performance mainly due to terminations.



CORC cable machine

Winding of long CORC cables:

- winding CORC cables layer-by-layer
- accurate control of: 1. tape tension
 - 2. winding angle
 - 3. spacing between tapes

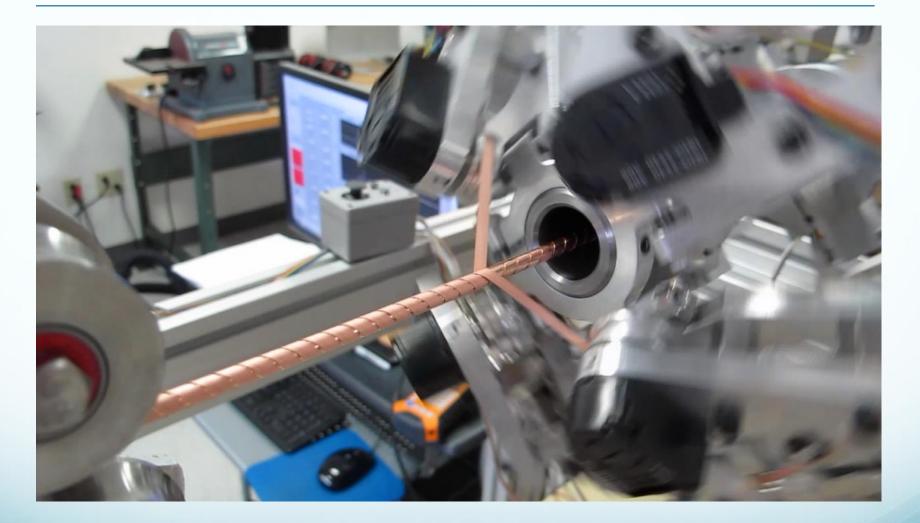
Long, high-quality CORC cables are now available!!!

Advanced Conductor Technologies LLC www.advancedconductor.com University of Colorado program sponsored by: DOE - Office of High Energy Physics grant DE-FG02-12ER41801

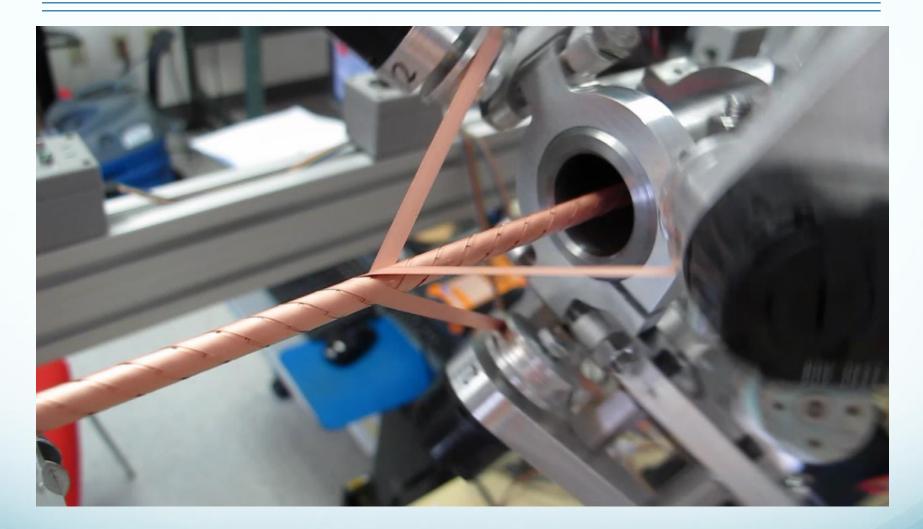
CORC cable for CERN order

Cable specification:

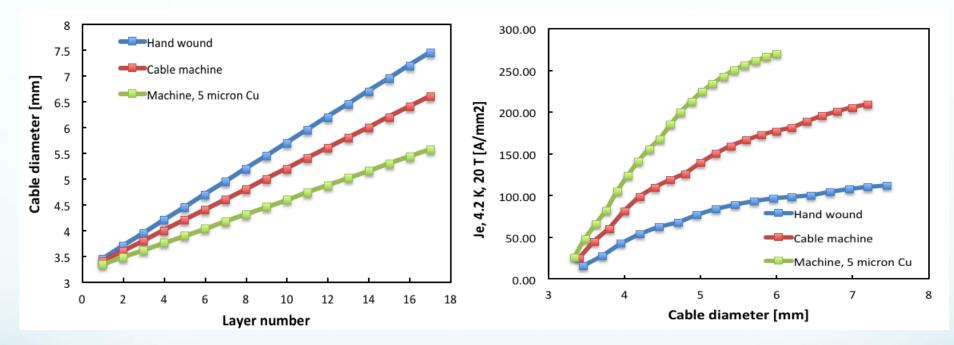
- 12 meter long
- 38 tapes (4 mm wide, 20 microns of copper)
- 5 mm diameter former (AI + Cu)



Cable finished Saturday May 17th. Liquid nitrogen test scheduled first week of June.


Winding the CERN CORC cable

Winding the CERN CORC cable (Cont.)



CORC cable performance projections

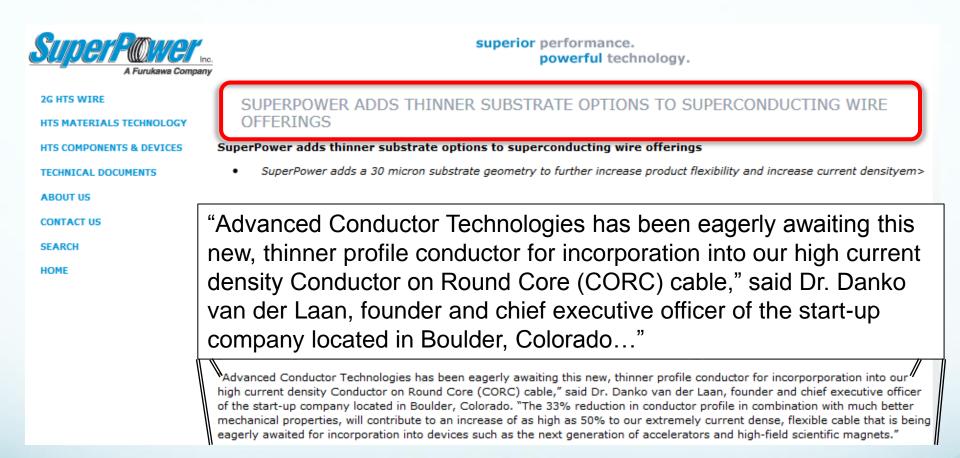
Improved $J_{\rm e}$ at 20 T due to winding machine and reduced copper thickness:

Roughly 30 % reduction in cable diameter when using 5 microns of copper and a cable machine.

Roughly 3x improvement of $J_{\rm e}$ at a cable diameter of 6 mm.

CORC cable performance projections (Cont.)

Improved J_{e} at 20 T due to reduced substrate thickness:



Roughly 50 % improvement of J_e when using 30 microns substrate. CORC cable with 300 A/mm² is less than 5 mm in diameter!

Thinner substrates are coming!

http://superpower-inc.com/content/superpower-adds-thinner-substrate-options-superconducting-wire-offerings

CORC cable performance exceeding 600 A/mm² (20 T)

Based on tapes available within 6 months:

30 μ m substrate, $I_c(77 \text{ K}, 4 \text{ mm}) = 150 \text{ A}$, lift factor =2 ($I_c(4.2 \text{ K}, 20 \text{ T})/I_c(77 \text{ K}, \text{ s.f})$

	O.D.	Tape width	Gap	# tapes	Layer-Ic	lc (77 K)	lc (4.2 K, 20 T)	Je (4.2 K, 20 T)
_ayer #	[mm]	[mm]	[mm]		[A]	[A]	[A]	[A/mm2]
1	3.08	3	0.5	2	225	225	432	58
2	3.16	3	0.5	2	225	450	864	110
3	3.24	3	0.5	2	225	675	1296	157
4	3.32	3	0.5	2	225	900	1728	200
5	3.4	3	0.5	3	338	1238	2376	262
6	3.48	3	0.5	2	225	1463	2808	295
7	3.56	3	0.5	2	225	1688	3240	326
8	3.64	3	0.5	2	225	1913	3672	353
0	2 7 2	2	0.5	2	225	2120	4104	270

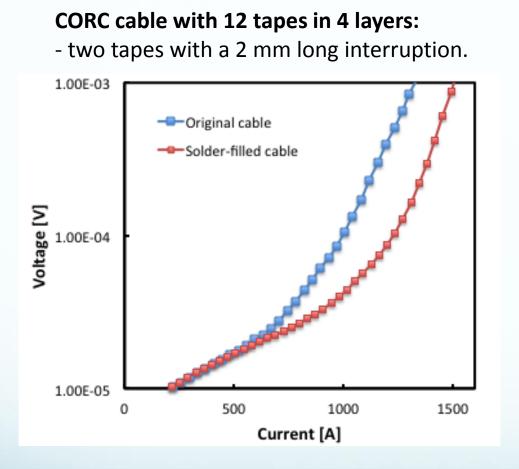
 J_{e} (4.2 K, 20 T) > 600 A/mm² possible in 4.5 mm diameter CORC cable! Cable bending diameter of 10x cable diameter => 4-5 cm!

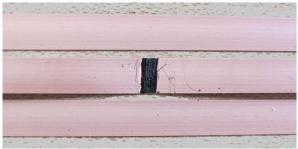
13	4.04	3	0.5	2	225	3038	5832	455
14	4.12	3	0.5	2	225	3263	6264	470
15	4.2	3	0.5	2	225	3488	6696	483
16	4.28	3	0.5	3	338	3825	7344	510
17	4.36	3	0.5	3	338	4163	7992	535
18	4.44	3	0.5	3	338	4500	8640	558
19	4.52	3	0.5	3	338	4838	9288	579
20	4.6	3	0.5	3	338	5175	9936	598

CORC cable performance exceeding 1300 A/mm² (20 T)

Based on tapes available within 1-3 years:

15 μ m substrate, $I_c(77 \text{ K}, 4 \text{ mm}) = 200 \text{ A}$, lift factor =3 ($I_c(4.2 \text{ K}, 20 \text{ T})/I_c(77 \text{ K}, \text{ s.f})$


	O.D.	Tape width	Gap	# tapes	Layer-Ic	lc (77 K)	lc (4.2 K, 20 T)	Je (4.2 K, 20 T)
Layer #	[mm]	[mm]	[mm]		[A]	[A]	[A]	[A/mm2]
1	3.05	3	0.5	2	300	300	864	118
2	3.1	3	0.5	2	300	600	1728	229
3	3.15	3	0.5	2	300	900	2592	333
4	3.2	3	0.5	2	300	1200	3456	430
5	3.25	3	0.5	2	300	1500	4320	521
6	3.3	3	0.5	2	300	1800	5184	606
7	3.35	3	0.5	2	300	2100	6048	686
8	3.4	3	0.5	2	300	2400	6912	761
9	3.45	3	0.5	2	300	2700	7776	832


J _e (4.2	K, 20 ⁻	<mark>Г) > 1</mark> 3	00 A/m	m²	possik	ole in 4	.0 mm	diameter	CORC cable!
	12	3.6	3	0.5	2	300	3600	10368	1019
	13	3.65	3	0.5	2	300	3900	11232	1073
	14	3.7	3	0.5	2	300	4200	12096	1125
	15	3.75	3	0.5	2	300	4500	12960	1173
	16	3.8	3	0.5	2	300	4800	13824	1219
	17	3.85	3	0.5	2	300	5100	14688	1262
	18	3.9	3	0.5	2	300	5400	15552	1302
	19	3.95	3	0.5	2	300	5700	16416	1340
	20	4	3	0.5	2	300	6000	17280	1375

Effect of tape inhomogeneity on CORC cable performance

Cable with defects: $I_c = 991 \text{ A}$ *n*-value = 10.8

Solder-filled cable: $I_c = 1244 \text{ A}$ n-value = 16.8

Current sharing in CORC cables lowers conductor homogeneity and piece length requirements!

CORC cable performance is largely independent of tape production quality!

Summary

CORC cables are being developed for three different markets:

- 1. High-current magnet cables for fusion and scientific magnets.
- 2. Power transmission cables and magnet feeders and busbars.
- 3. High-current density cables for HEP magnets:

Cable	Achieved		F	Potential	Μ	σ _{transverse}	^E longitudinal	
concept			I _{op} J _{cable}					
	(kA)	(A/mm ²)	(kA)	(A/mm ²)	(mT)	(MPa)	(%)	
CORC	5	114 (19 T)	>10	>1300 (20 T)	?	1000	0.6	

CORC cable performance improvements:

- $J_{e} > 300 \text{ A/mm}^2$ possible with standard conductor ($I_{c,tape}(20 \text{ T}) = 150 \text{ A}$
- $J_e > 600 \text{ A/mm}^2$ using 30 µm substrate and improved pinning ($I_{c,tape}(20 \text{ T}) = 300 \text{ A}$
- $J_e > 1300 \text{ A/mm}^2$ using 15 µm substrate and improved pinning ($I_{c,tape}(20 \text{ T}) = 600 \text{ A}$

High-quality CORC cables can now be delivered in long lengths!

Advanced Conductor Technologies LLC www.advancedconductor.com

danko@advancedconductor.com +1-720-933-5674