Future Circular Collider (FCC) Study

Michael Benedikt

EuCARD-2, DESY, 22nd May 2014

Future Circular Collider Study Michael Benedikt EuCARD-2, DESY, 22nd May 2014

Outline

- Motivation & scope
- Parameters & design challenges
- Study organization, study time line
- Preparing global FCC collaboration
- Summary

Future Circular Collider Study Michael Benedikt EuCARD-2, DESY, 22nd May 2014

Summary: European Strategy Update 2013 Design studies and R&D at the energy frontier

...."to propose an ambitious **post-LHC accelerator project at CERN** by the time of the next Strategy update":

- d) CERN should undertake design studies for accelerator projects in a global context,
 - with emphasis on proton-proton and electron-positron high-energy frontier machines.
 - These design studies should be coupled to a vigorous accelerator R&D programme, including high-field magnets and high-gradient accelerating structures,
 - in collaboration with national institutes, laboratories and universities worldwide.
 - http://cds.cern.ch/record/1567258/files/esc-e-106.pdf



Exploratory studies VHE-LHC

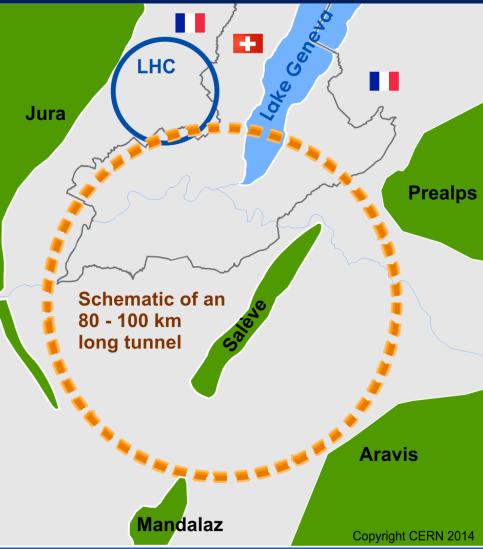
First studies on a new 80 km tunnel in the Geneva area

- 42 TeV with 8.3 T using present LHC dipoles
- 80 TeV with 16 T based on Nb₃Sn dipoles
- 100 TeV with 20 T based on HTS dipoles

HE-LHC :33 TeV with 20T magnets

h ee he

Future Circular Collider Study Michael Benedikt EuCARD-2, DESY, 22nd May 2014


Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018)

Forming an international collaboration to study:

pp-collider (*FCC-hh*)
 → defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km ~20 T \Rightarrow 100 TeV *pp* in 80 km

- e⁺e⁻ collider (FCC-ee) as potential intermediate step
- p-e (FCC-he) option
- 80-100 km infrastructure in Geneva area

FCC motivation: pushing energy frontier

High-energy hadron collider FCC-hh as long-term goal

- Seems only approach to get to 100 TeV range in the coming decades
- High energy and luminosity at affordable power consumption
- Lead time design & construction > 20 years (LHC study started 1983!)
 → Must start studying now to be ready for 2035/2040

Lepton collider FCC-ee as potential intermediate step

- Would provide/share part of infrastructure
- Important precision measurements indicating the energy scale at which new physics is expected
- Search for **new physics in rare decays of** *Z***,** *W***,** *H***,** *t* and rare processes

Lepton-hadron collider FCC-he as option

• High precision deep inelastic scattering and Higgs physics

Most aspects of collider designs and R&D non-site specific. Tunnel and site study in Geneva area as ESU requests.

PRELIMINARY

- Energy
- Dipole field
- Circumference
- #IPs
- Beam-beam tune shift
- Bunch spacing
- Bunch population (25 ns)
- #bunches
- Stored beam energy
- Emittance normalised
- Luminosity
- β*
- Synchroton radiation arc 26 W/m/aperture (filling fact. 78% in arc)
- Longit. emit damping time 0.5 h

- 100 TeV c.m.
- ~ 16 T (design limit) [20 T option]
- ~ 100 km
- 2 main (tune shift) + 2
- 0.01 (total)

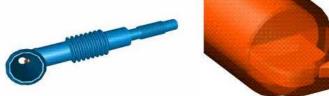
25 ns [5 ns option]

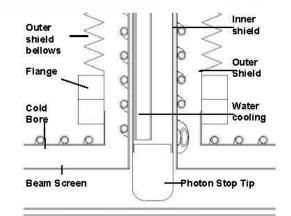
- 1x10¹¹ p
- 10500

8.2 GJ/beam

- 2.15x10⁻⁶m, normalised
- 5x10³⁴ cm⁻²s⁻¹
- 1.1 m [2 m conservative option]

FCC-hh: some design challenges


• Optics and beam dynamics


- Optimum lattice design, maximise filling factor of arcs
- IR design & length (&#) of straight section
- Field quality requirements and dynamic aperture studies
- Impedances, instabilities, feedbacks
 - Beam-beam, e-cloud, etc.
 - Feedback simulation & system conception
- Synchrotron radiation damping
 - Controlled blow up? Smaller bunch spacing with low emittance?, ...
- Energy in beam & magnets, dump, collimation; quench protection
 - Stored beam energy and losses critical: 8 GJ/beam (0.4 GJ LHC)
 - Collimation, losses, radiation effects: very important
 - Synergies to intensity frontier machines (SNS, FRIB, etc.)

FCC-hh: Synchrotron Radiation Heat Load

- High synchrotron radiation load on beam pipe
 - Up to 26 W/m/aperture in arcs, total of ~5 MW for the collider
 - (LHC has a total of 1W/m/aperture from different sources)
- Three strategies to deal with this
 - LHC-type beam screen
 - Cooling efficiency depends on screen temperature, higher temperature creates larger impedance \rightarrow 40-60 K?
 - Open midplane magnets
 - Synergies with muon collider developments
 - Photon stops
 - dedicated warm photon stops for efficient cooling between dipoles
 - as developed by FNAL for VLHC

http://inspirehep.net/record/628096/files/fermilab-conf-03-244.pdf Also P. Bauer et al., "Report on the First Cryogenic Photon Stop Experiment," FNAL TD-03-021, May 2003

• FHC baseline is 16T Nb₃Sn technology for ~100 TeV c.m. in ~100 km

Goal: 16T short dipole models by 2018 (America, Asia, Europe)

Develop Nb₃Sn-based 16 T dipole technology,

- with sufficient aperture (~40 mm) and
- accelerator features (field quality, protect-ability, cycled operation).
- In parallel conductor developments
- In parallel HTS development targeting 20 T.
- HTS insert, generating o(5 T) additional field, in an outsert of large aperture o(100 mm)

Goal: Demonstrate HTS/LTS 20 T dipole technology in two steps:

- a field record attempt to break the 20 T barrier (no aperture), and
- a 5 T insert, with sufficient aperture (40 mm) and accel. features

Running programs – LTS (Nb3Sn)

Program	Goals	Main partners	Status	
US-base program	High field Nb₃Sn dipoles as technology demonstrators	DOE (BNL, FNAL, LBNL)	D20 reached 13.5 T (50 mm) in 1997, HD1 reached 16 T (0 mm) in 2004. LD1 shell and conductor procured	
EuCARD FReSCa2	13 T (100 mm) Nb₃Sn dipole	EuCARD collaboration (CEA, CERN)	SMC reached 13.5 T (0 mm) in 2013, RMC in construction, FReSCa2 structure procured and tested at CERN, coils in fabrication at CEA	
US-LARP	140 T/m (150 mm) Nb₃Sn quadrupoles for the LHC IR upgrade	DOE US-LARP (BNL, FNAL, LBNL), CERN	Short HQ models (120 mm), long LQ prototype (90 mm) tested, QXF (150 mm) models in production (US-LARP and CERN)	
11 T	11 T (60 mm) Nb₃Sn dipoles for the LHC DS collimators	FNAL, CERN	2 short models tested, 1 mirror in test at FNAL, first model in production at CERN	

Running programs – HTS

Program	Goals	Main partners	Status	
US-base program	High field HTS small models as technology demonstrators	DOE (BNL, FNAL, LBNL)	BSCCO racetracks produced and tested (self field) at LBNL. CCT design and prototyping work, first model (NbTi) reached 2.5 T in 2013	
EuCARD HTS insert	6 T (0 mm) HTS dipole insert for FReSCa2 (19 T)	EuCARD collaboration (INPG, CEA)	Short racetrack coils in test at INPG	
EuCARD2	5 T (40 mm) HTS short dipole (also as insert for FReSCa2 (18 T)	EuCARD2 collaboration (CERN, CEA), S- Innovation, US-BSCCo	Superconductor material studies in progress, conceptual designs	
US-BSSCo	Increase J _e of BSCCO-2212 to 600 A/mm ² for high B physics (30 T all SC user facility)	DOE (BNL, FNAL, LBNL), NHMFL	BSCCO-2212 production restarted at OST in collaboration with CERN, OPHT furnaces, cabling R&D	
S-Innovation	HTS-based compact accelerator systems	Kyoto University, KEK	Conceptual design studies, test of a racetrack HTS at 77 K (self field) to determine field quality	

Future Circular Collider Study Michael Benedikt EuCARD-2, DESY, 22nd May 2014 NOTE: program at Carolina University not reported

Summary on high-field magnets

- U.S. research has been very strong in the past years in superconducting high-field magnet technology:
 - Highest field achieved in dipole configuration (LBNL, 16 T)
 - Hosting the industrial superconductor production with highest critical current density (OST RRP, 3300 A/mm² at 12 T and 4.2 K)
 - Vigorous program for the industrial production of a BSCCO-2212 round wire with the characteristics required by high-field applications
- Fruitful collaborations between CERN, CEA, US-DOE Laboratories and other institutes and universities. E.g.
 - EuCARD, EuCARD 2 collaborations FReSCa2 + HTS inserts
 - US-LARP collaboration for HL-LHC quadrupole production of approximately half of the triplet magnets, as required for LHC LS3
 - FNAL/CERN collaboration for the 11 T LHC dipole design and demonstration of the technology required for a for the LHC
- These are excellent pre-requisites for a strong international collaboration on high-field magnet R&D that will be essential for FCC studies.

- Design choice: max. synchrotron radiation power set to 50 MW/beam
 - Defines the max. beam current at each energy.
 - 4 Physics working points
 - Optimization at each energy (bunch number & current, emittance, etc).

Parameter	TLEP-Z	TLEP-WW	TLEP-H	TLEP-tt _{bar}	LEP2
E/beam (GeV)	45	80	120	175	104
I (mA)	1450	152	30	6.6	3
Bunches/beam	16700	4490	170	160	4
Bunch popul. [10 ¹¹]	1.8	0.7	3.7	0.86	4.2
L (10 ³⁴ cm ⁻² s ⁻¹)	28.0	12.0	4.5	1.2	0.012

• For TLEP-H and TLEP-t the beam lifetime of ~few minutes is dominated by Beamstrahlung (momentum acceptance of 2%).

FCC-ee: some design challenges

- Short beam lifetime from Bhabha scattering and high luminosity
 - Top-up injection
- Lifetime limits from Beamstrahlung
 - Flat beams (very small vertical emittance, $\beta^* \sim 1$ mm)
 - Final focus with large (~2%) energy acceptance
- Machine layout for high currents, large #bunches at Z pole and WW.
 - Two rings and size of the RF system.
- Polarization and continuous high precision energy calibration at Z pole and WW, where natural polarization times are ~ 15 hours.
- Important expertise available worldwide and potential synergies:
- Beam optics, experimental insertions, machine detector interface
 ILC, B-factories, SLAC, BNL
- Transverse Polarization ⇔ RHIC, SLC:
 - Polarization optimization, snakes for physics with polarized beams.

FCC-ee: RF - relevant parameters

Main RF parameters

- Synchrotron radiation power: 50 MW per beam
- Energy loss per turn: 7.5 GeV (at 175 GeV, t)
- Beam current up to 1.4 A (at 45 GeV, Z)
- Up to 7500 bunches of up to 4×10^{11} e per ring.
- CW operation with top-up operation, injectors and top-up booster pulsed

First look on basic choices and RF system dimension

- Frequency range (200 ... 800) MHz with ~400 MHz as starting point
 - Initial choice based on present frequencies (harmonics of 200 MHz FHC)
 - Disadvantage lower frequency: mechanical stability, He amount for cooling, size ...
 - Disadvantage higher frequency: denser HOM spectrum (multi-cell), BBU limit, larger impedance, smaller coupler dimensions
- System dimension compared to LHC:
 - LHC 400 MHz \rightarrow 2 MV and ~250 kW per cavity, (8 cavities per beam)
 - Lepton collider ~600 cavities 20 MV / 180 kW RF \rightarrow 12 GV / 100 MW

FCC-ee: RF main R&D areas

- SC cavity R&D
 - Large Q_0 at high gradient and acceptable cryogenic power!
 - E.g.: Recent promising results at 4 K with Nb₃Sn coating on Nb at Cornell, 800 °C ÷ 1400 °C heat treatment at JLAB, beneficial effect of impurities observed at FNAL.
 - Relevant for many other accelerator applications
- High efficiency RF power generation from grid to beam
 - Amplifier technologies
 - Klystron efficiencies beyond 65%, alternative RF sources as Solid State Power Amplifier or multi-beam IOT, e.g. ESS solution with industry (CPI in U.S.)
 - Relevant for all high power accelerators, intensity frontier (drivers), (e.g. vstorm, LBNE, DAEδALUS, µcoll,)
- R&D Goal is optimization of overall system efficiency and cost!
 - Power source efficiency, low loss high gradient SC cavities, operation temperature vs. cryogenic load, total system cost and dimension.

Future Circular Collider Study Kick-off Meeting

12-15 February 2014, University of Geneva Switzerland

LOCAL ORGANIZING COMMITTEE University of Geneva

C. Blanchard, A. Blondel, C. Doglioni, G. Iacobucci, M. Koratzinos

CERN

M. Benedikt, E. Delucinge, J. Gutleber, D. Hudson, C. Potter, F. Zimmermann

SCIENTIFIC ORGANIZING COMMITTEE

FCC Coordination Group A. Ball, M. Benedikt, A. Blondel, F. Bordry, L. Bottura, O. Brüning, P. Collier, J. Ellis, F. Gianotti, B. Goddard, P. Janot, E. Jensen, J. M. Jimenez, M. Klein, P. Lebrun, M. Mangano, D. Schulte, F. Sonnemann, L. Tavian, J. Wenninger, F. Zimmermann


http://indico.cern.ch/

e/fcc-kickoff

FCC Kick-off Meeting Geneva

http://indico.cern.ch/e/fcc-kickoff

UNIVERSITÉ DE GENÈVE EUCARD

CFRN

Future Circular Collider Study Michael Benedikt EuCARD-2, DESY, 22nd May 2014

Kick-off Meeting of the Future Circular Colliders Design Study

12 - 15 February 2014, University of Geneva / Switzerland

341 registered participants

Future Circular Collider Study Michael Benedikt EuCARD-2, DESY, 22nd May 2014

och@cern.

FCC Kick-off participants

341 registered participants - geographical distribution

Americas (37) Canada: 1 Mexico: 2 US: 34

<u>Asia (19)</u> China: 9 Japan: 9 Republic of Korea: 1

<u>Africa (1)</u> South Africa: 1 **Europe** (284) Austria: 1 **CERN: 140** Czech Republic: 2 Denmark: 1 France: 30 Germany: 14 Greece: 1 Hungary: 2 Italy: 20 Poland: 6 Portugal: 2 Russia: 8

Serbia: 1 Spain: 11 Sweden: 1 Switzerland: 19 (w/o CERN) UK: 25

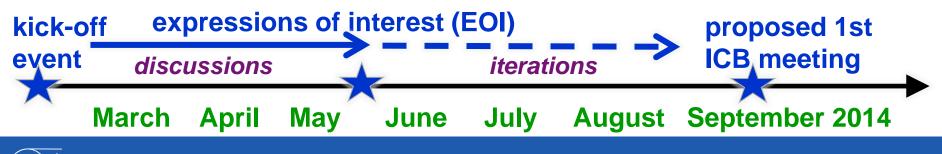
Well-balanced world-wide attendance

Future Circular Collider Study Michael Benedikt EuCARD-2, DESY, 22nd May 2014

Workshop Goals

Discussion of all FCC aspects

Rolf Heuer Opening talk


- Refine scope of the study
- Define schedule, WBS, milestones of the study
- Establish the path towards international collaboration: Expressions of Interest, formation of collaboration, accepting new partners throughout the duration of the study
- Open process

Next steps

- Establish an international collaboration:
- Following very positive reactions and the enthusiasm during the Kick-off meeting:
 - \rightarrow Invitations to institutes to join collaboration
 - → Aiming at expressions of interest by end May 2014 to form nucleus of collaboration by September 2014
 - \rightarrow Enlargement of the study preparation team
 - → First international collaboration board meeting 9-10 September at CERN

FCC EU Design Study Proposal

Horizon2020 call – design study, deadline 02.09.2014

Prepare proposal parallel to FCC collaboration setup

<u>Goals fo EU DS:</u> conceptual design, prototypes, cost estimates, ... From FP7 HiLumi LHC DS \rightarrow positive experience:

- 5-6 work packages as sub-set of FCC study
- ~10-15 beneficiaries (signatories of the contract with EC)

<u>Non-EU partners can join as beneficiary – signatory with or w/o EC</u> contribution (contractual commitment) or as associated partner – nonsignatory (in-kind contribution with own funding, no contractual commitment)

2020

HORIZ

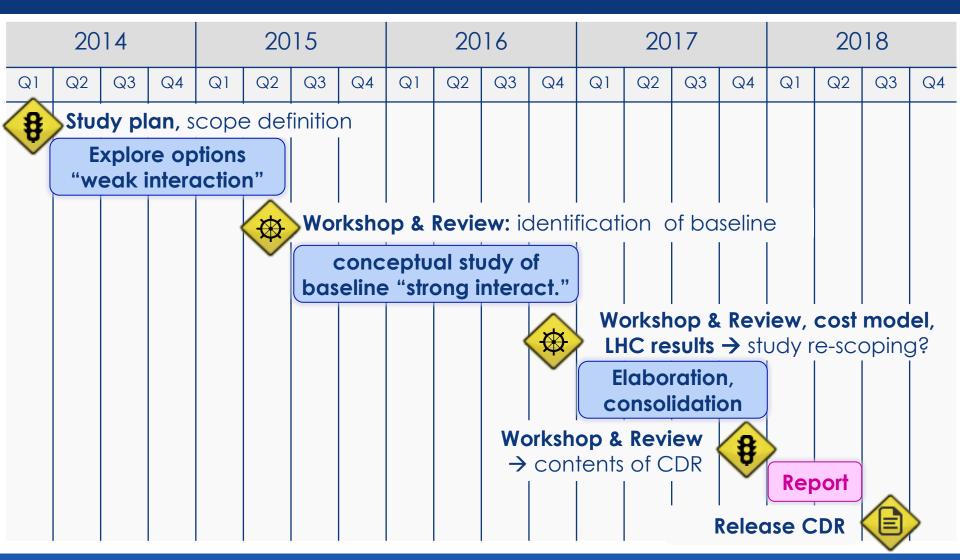
FCC - US Status

- DOE had limited FCC kick-off participation to 1 representative/laboratory

- Still 33 US participants (many institutes!) attended
- DOE request not to interfere with US "P5 process" has been fully respected by FCC study coordination
- Designated US-DOE contact for FCC: William Barletta, MIT
- US has relevant expertise: SSC, VLHC, HL-LHC, RHIC, Tevatron, CEBAF, SNS, ... US could make significant contributions to high-field magnets and SRF, e.g. through structure like LARP
- US holding FCC physics workshops at SLAC, FNAL, Aspen,
- FCC study proposal to include two US representatives in global study steering group (which could play a role in this critical formation phase) still waiting for DOE approval

FCC - China Status

 IHEP/CAS project of CepC/SppC similar to FCC-ee/FCC-hh

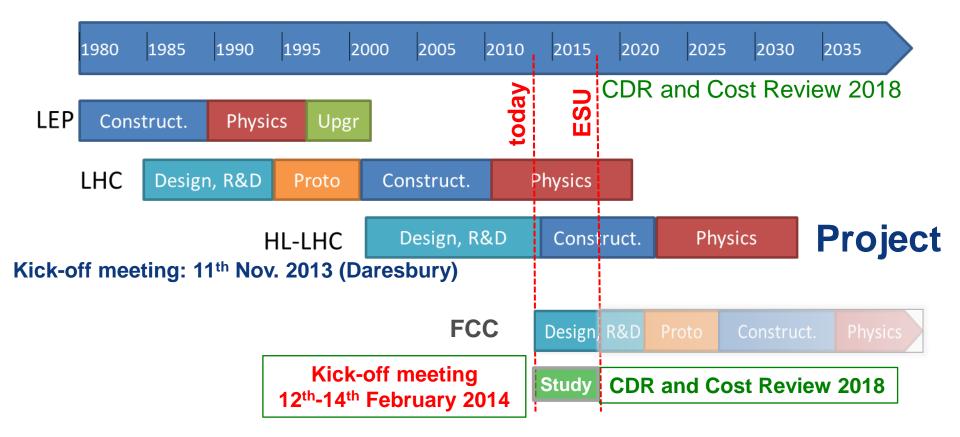


- Numerous CepC workshops and events in China;
- Invited visits by many international accelerator experts (SLAC, KEK, Cornell, FNAL, BINP, ANL, Korea, ...)
- More aggressive time schedule: CepC CDR end of 2014;
 first e⁺e⁻ collisions in 2028; first pp collisions in 2042
- Attractive location (1 h from Beijing by TGV, "Chinese Toscana", "best beach of China")
- Present project proposal based on **54 km circumference** (2x LHC)
- **Optimized for Higgs factory mode** (240 GeV c.m.)
- Fruitful collaboration & competition with FCC (joint meetings)

Proposal for study timeline

Future Circular Collider Study Michael Benedikt EuCARD-2, DESY, 22nd May 2014

FCC work plan study phase 1



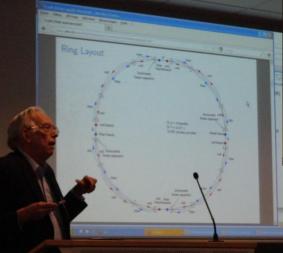
participating regions

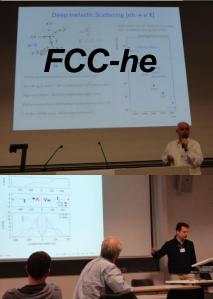
Release CDR & Workshop on next steps

FCC study milestones

Summary

- There are strongly rising activities in energy-frontier circular colliders worldwide. CERN is setting-up an international study for the design of Future Circular Colliders (FCC).
- Worldwide collaboration in all areas, i.e. physics, experiments and accelerators will be important for the field of HE physics in general and to reach the demanding goal of a CDR by 2018.
- The FCC kick-off meeting was very well attended, with balanced international participation and with very constructive and encouraging atmosphere, explicitly remarked by many participants.
- There was a broad consensus on study organisation, contents, timeline and the proposed collaboration process.





View of the second s

 $\begin{array}{l} \hline Power Limitation \\ \bullet \mbox{ synchrotron radiation} \\ U_{\phi} = \frac{4\pi}{3} \frac{r_{e}mc^{2}}{\rho} \gamma^{*} \\ \bullet \mbox{ Beam power given by RF} \\ P_{b} = U_{\phi}I/e \\ \bullet \mbox{ Limits the total beam current I} \\ \hline For example, E_{0}=120 \mbox{ GeV}, p=2.6 \mbox{ km}, U_{0}=6.97 \mbox{ GeV}, I=7.2 \mbox{ mA}, lead to P_{0}=50 \mbox{ WW in our design.} \end{array}$
