Development of REBCO Twisted Stacked-Tape Cables for Magnet Application

presented by M. Takayasu, MIT, PSFC

L. Chiesa,	W. Nachtrab,	F.J. Mangiarotti,
N. Allen	M.K. Rudziak,	J.V. Minervini,
Tufts University, ME,	T. Wong	L. Bromberg
Medford, MA 02155	Supercon, Inc.,	MIT, PSFC
	Shrewsbury, MA 01545	Cambridge, MA 02139

This work was supported by the U. S. Department of Energy, Office of Fusion Energy Science under Grants: DE-FC02-93ER54186 and partially DE-SC0004062, and Supercon DOE STTR Phase I DE-SC0007722 and Phase II DE-SC0004269.

A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF, the State of Florida and the DOE.

May 21-23, 2014

1st Workshop on Accelerator Magnets in HTS at DESY, Hamburg, Germany

Twisted Stacked-Tape Cable (TSTC)

What is it?

For example:

40 YBCO tapes (4 mm width, 0.1 mm thickness) are **stacked** between two 0.5 mm thick copper strips, and

loosely wrapped with a fine stainless steel wire 0.23 mm in diameter,

and then **twisted** together along their axis.

Outline

- Single tape torsion behavior
- Twisted-Stacked Tape Cable (TSTC) bending test in self field at 77 K
- Stacked-Tape Twist-Winding (STTW) for 3D magnet winding method
- High field tests at 4.2 K
 - Pentagon coil tests at NHMFL (up to 20 T)
 - Straight cable test at KIT (up to 12 T)

Cable "degradation" compared with single tape

- Possible Degradation explanation by non-uniform current distibution
- Large-scale TSTC conductor concept
- TSTC for Accelerator Magnet Application
- Conclusion and future work

REBCO Single Tape Tests at 77 K

Critical Current vs. Twist Pitch

Characteristics* of REBCO Tapes Used

	SuperPower	AMSC	SuNAM
Таре Туре	SCS4050-AP	344C	SCN04150
Processing	IBAD-MOCVD	RABiTS-	IBAD (Sputter &
		MOD	E-beam)
Width (mm)	4.15	4.42	4.1
Thickness (µm)	94	208	150
Substrate material	Hastelloy C-276	Ni-5at%W	Stainless steel
	(50 μm)	(50 μm)	(104 μm)
Cu stabilizer (µm)	40	100	~50
	(ElectroPlating)	Laminated	(ElectroPlating)
Critical current at	~105	~110	~240
77 K, Self field (A)			
		0	

*Based on manufacturer's specification.

Cable Bending Tests at 77 K

2 m, 32 tapes YBCO Twisted Stacked Tape Cable (TSTC)with 200 mm twist pitch

Cross-section: 4.8 mm x 4.8 mm Twist pitch: 200 mm

Cable degrades due to self-field.

After soldering the straight cable was mounted on side surfaces of various diameter disks.

250 mm	1.9 %
140 mm	5.4%
Straighten after	3.6%
bending tests	

TSTC conductor is bendable.

Bending diameter = 0.5 m

2 m one turn coil

Stacked-Tape Twist-Winding (STTW) Method for 3D Magnets New REBCO tape magnet winding concept

Stacked tape cable is twisted during winding

A U-turn portion of one turn coil demonstrating a curved saddle winding on a 50 mm diameter tube. The cable is composed of 50 YBCO tapes.

ApplicationsSmall diameter magnet3D HEP accelerator magnets, generator and motor magnets

6

YBCO TSTC Small Coiled Sample for High Field Test Made by STTW

8.9 mm

76.2 mm

0.080

(a) 50 tape, 2.5 turn coil composed of YBCO cable wound on a 165 mm diameter pentagon cylinder. (b) Enlarged view of a 3D sharp bending section.

165 mm

8.9 mm

96 mm

8.1 mm Dia helical groove

Pitch 10.2 mm

165 mm

High Field Test at NHMFL Two Pentagon Coils Tested at 20 T

50-Tape, 2.5 Turn, 2.32 m cable wound on pentagon shaped cylinder surface with about 200 mm twist-pitch. Tested at NHMFL using 20 T, 195 mm warm-bore Bitter magnet

2nd Pentagon Coil

1st Pentagon Coil

High Field Test at KIT 40-Tape YBCO TSTC Conductor Tested at KIT

40-Tape, 1.16 m long, 200 mm twist-pitch cable in 9.5 mm OD solder-filled Cu tube tested using FBI at KIT, Germany (12 T, 10 kA, 4.2 K – 77 K)

No voltage change observed for 12 minuets at 5.47 kA at 12 T.

KIT tested section: 15% initial Ic, but less trans. load effect. End section: No initial Ic degradation, but large load effect.

Lorentz force degradation was 10% - 15%. Additional degradation of about 45% was NOT permanent.

Summary of TSTC Conductor Test Results at High Field

Critical current comparison of two pentagon coils tested at NHMFL and one straight-cable tested at KIT with single-tape data (B // c-axis).

Degradations were about 50% at high fields. Partially Lorentz force degradation. Mostly not a permanent degradation.

Degradation Origins ?

Permanent Degradation

Electromagnetic Lorentz force degradation: 10% - 15% for a 40-tape TSTC at 12 T.

Non-Permanent Degradation ?

About 45% was NOT permanent.

Mechanical

It may not be possible to mechanically produce 45% non-permanent degradation.

Electrical

Possible loop current time constants are shorter than a few hundred seconds.

Non-uniform termination resistance causes non-uniform current distribution and degradation.

REBCO Cable Termination Methods

YBCO-BSCCO Termination

YBCO- YBCO Termination

Folding-Fan Soldered Termination

Current Distribution due to Termination Resistance

Pure-Resistance Model Circuit of 40-Tape Cable

- Apply a total current and analyze tape currents by iteration using Microsoft Excel[®]
- No current sharing between tapes

Estimated Termination Resistance Distribution used for Simulation

Termination tape-resistance statistic

	Standard		
Average	Deviation	Maximum	Minimum
529 nΩ	109 nΩ	672 nΩ	254 nΩ

Termination of YBCO cable: YBCO Tapes –BSCCO tapes – Cu

Simulation Results for 1 m 40-Tape YBCO TSTC Conductor Tested at KIT

Performance in Self Field and 5 m Cable

1 m 40-Tape Cable at 77 K (Self field)

Termination resistance is not critical in self field at 77 K (low current and long sample).

5 m 40-Tape Cable at 4.2 K and 12 T

Long cable is affected less by nonuniform termination resistances.

Large-Scale TSTC Conductor Concept

Basic conductor

Twisted stacked-tape cable in a round tube

Cross-section and a twisted stacked-tape conductor

Multistage conductor

3x3 cable and 12 sub-cable conductors

3x3 cable

12 sub-cable

12 sub-cable conductor

CICC mockup of TSTC conductor

12 mm x 12 mm, copper diameter 9.5 mm

40 YBCO tapes

20 YBCO tapes in each helical groove (Total 60 tapes)

Supercon H-Channel TSTC Conductor

Self field degradation is reduced.

40 tape H-channel dual-stack cable

Large TSTC Conductor Current Capacity

Estimated currents and current densities of various conductors Basic cables composed of 40-tapes

Calculation based on SuperPower tape, the critical current (193 A) at 16 T and 4.2

Conductors	Current at 16 T, 4.2K (kA)	Current Density (A/mm ²)	Conductor Diameter (mm)	Conductor Cross- Section
Basic cable	7.7	273	6.0	
3 subcable	23.2	175	13	
3x3 cable	69.5	113	28	
12 subcable	92.7	205	24	
H-channel basic cable	7.7	109	9.5	
3-channel basic cable	23.2	151	14	

Κ

H-channel cable

3-channel CICC cable 17

TSTC for Accelerator Magnet Application

Possible Practical Basic ConductorSmall diameter 3D windingLarge

STTW

Large diameter magnet

TSTC

4 mm width, 40-tape TSTC conductor based on SuperPower AP Tape

• Minimum twist pitch -

150 mm (100% I_c), 100 mm (98% I_c)

• Electromagnetic force degradation -

~15% degradation by 60 kN/m (5 kA x 12 T) or 15 MPa 20 T magnet: 136 kN/m (6.8 kA x 20 T) or 34 MPa Degradation?

• Critical current and current density

Achieved	I _c	Overall J _e		
TSTC tested at KIT 9.5 mm Dia. Cu sheathed	5 kA (B=12 T)	70 A/mm ² (B=12 T)		
Tape $I_c = 235 \text{ A at } B = 12 \text{ T}, I_c = 170 \text{ A at } B = 20 \text{ T}$				

Potential	I _c	Overall J _e	
TSTC			
9.5 mm Dia. Cu sheathed	9.4 kA	133 A/mm ²	
TSTC tested at KIT	(B=12 T)	(B=12 T)	
	6.8 kA	96 A/mm ²	
	(B=20 T)	(B=20 T)	
Single stack	6.8 kA	241 A/mm ²	
6.0 mm Dia.	(B=20 T)	(B=20 T)	
H-channel dual stack	6.8 kA	107 A/mm^2	
9.0 mm Dia.	(B=20 T)	(B=20 T)	
STTW			
Stacked tapes sandwiched	6.8 kA	203 A/mm ²	
with two Cu strips	(B=20 T)	(B=20 T)	
6.5 mm Dia.			

Conclusions and Future Work

Twisted Stacked-Tape Cable (TSTC)

- Simple cabling method, high tape usage, good bendability, compact cable, high current density, scale-up for large cable fabrication
- Termination and joint:

YBCO-BSCCO, and YBCO-YBCO (demountable mechanical contact or soldered) Fan solder termination

• Degradations:

Low field: Self-field degradation

High field: Electromagnetic force and non-uniform termination resistances

Future Work

- Further degradation study: High field cable tests
- Stacked-Tape Twist-Winding (STTW) for 3D magnets
- Multiple-stage cable: Bendability and high field tolerance
- AC losses, screening (shielding) current, magnetization, transverse load

Thank you for your attention

Twisted Stacked-Tape Cable Process

Scale-up Fabrication Method Development (2)

1.75" OD x 6" L Cu Rod after EDM Cutting of Channel Slots

Channel Wrapped in 0.005" Ti Foil Etching Barrier

EDM Channel with Ti Etching Barrier in Billet Assembly

Supercon H-Channel TSTC Conductor

H-channel conductor with 40 tapes

- 1. Make H-channel slot from a billet (44.5 mm Dia. 152 mm length) by EDM.
- 2. Channel surfaces covered with 0.13 mm **Ti foil**.
- 3. Cover with a copper sheath, and draw down to 7.9 mm Dia. (4.8 m length).
- **4. Twist** and remove the outer sheath and channel fillers by **Ti-etching**.
- 5. Insert 20 YBCO tapes in each channel.
- 6. Rod and tape assembly are inserted into a **copper sheath**, and draw the sheath to match to the H-channel diameter. Outer diameter is about 9.1 mm.

Cross-section of H-channel cable

40 tape H-channel cable

Twisting tool The distance between chuck jaws is adjustable up to 800 mm.

Scale-up Fabrication Method Development (2) cont'd H-Channel Conductor

Critical Current Test Results at 77 K

Supercon H-Channel TSTC Conductor

 $I_{c} = 2080 \text{ A at } 10 \ \mu\text{V/m},$ 2560 A at 100 \muV/m (n=12)

Self-field distribution on cable cross-section

H-channel conductor reduces the self-field effect.

Scale-up Fabrication Method Development (1)

Machine Helical Groove in a copper rod

Fabricated one (upper) and three (lower) helical grooves of 508 mm length on 3/8" diameter copper rod. The inserts show close-up view of the rods of one and three grooves, and the cross-sections.

Cross-section of onehelical-groove machined on a 3/8" (9.5 mm) diameter copper rod.

Four axis CNC milling machine fabricating 20" long, three helical grooves on a 9.5 mm diameter copper rod.

HTS Tape Cabling Methods

	Helical winding on a round former		Stacking	
Cabling	Winding with a	Winding tightly	Roebel cabling of	Twisting
methods	long pitch on a	with a short pitch	tapes cut in	stacked tapes.
	large diameter	on a small	zigzag pattern.	
	former.	diameter former.		
	[2]	[10]	[5]	[22]
		CORC	RACC	TSTC
		Conductor on	Roebel	Twisted
		Round Core	Assembled	Stacked-Tape
			Coated Conductor	Cable
Calculated	94% - 97%	40% - 90%	40% - 89%	99%
length ratio	depending on	depending on	depending on the	
of cable to	former diameter	former diameter	number of strands	
tape length	and winding pitch	and winding pitch	obtained from a	
			original tape	

M. Takayasu, et al, Supercond. Sci. Technol. 25 014011, 2012.

[2] J.F. Maguire, et al., IEEE Trans. Appl. Supercond. 17 2034-2037, 2007.

[5] W. Goldacker, et al., IEEE Trans. Appl. Supercond. 17 3396-3401, 2007.

[10] D.C. van der Laan, et al., Supercond. Sci. Technol. 24 042001, 2011.

[22] M. Takayasu M, et al, IEEE Trans. Appl. Supercond. 21 2341-2344, 2010.