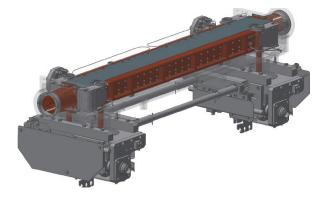
Test simulations of TT2-111R lossy dispersive material properties

Oscar Frasciello, S. Tomassini, M. Zobov

INFN, Laboratori Nazionali di Frascati, Rome, Italy

8th HiLumi WP2 Task 2.4 meeting, CERN, March 26th, 2014

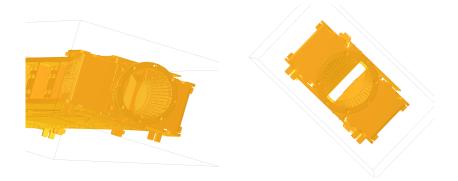
Aknowledged people: W. Bruns, A. Gallo, D. Alesini, for many discussions and help



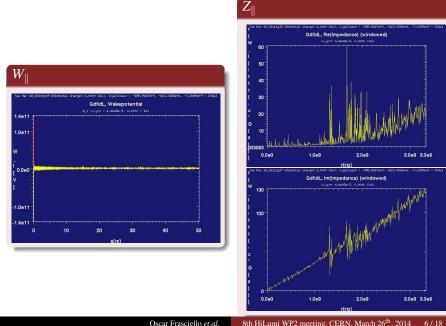

Laboratori Nazionali di Frascati

- Why we do need TT2-111R dispersive properties simulations: the new BPM collimator design for HiLumi-LHC
- TT2-111R dispersive permeability implementation in GdfidL: test simulations
- Results comparison between S-parameters analytical prediction, GdfidL and HFSS results
- TT2-111R effects on new collimator design impedance estimation
- Conclusions and future perspectives

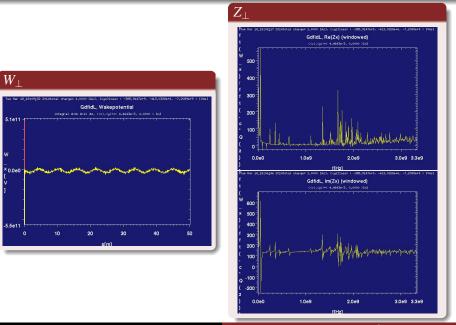
The new BPM-button HiLumi-LHC collimator design



The new BPM-button HiLumi-LHC collimator design

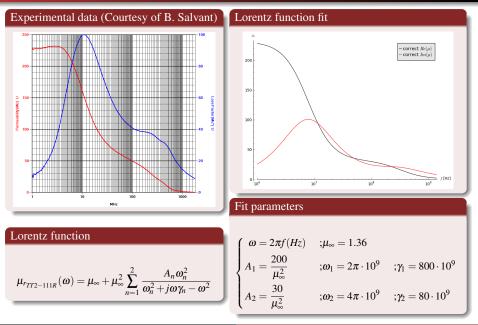

RF fingers are removed and their HOM damping functions are supposed to be supplied by TT2-111R ferrite blocks

New collimator design GdfidL model


No more symmetry planes are applicable $\downarrow \downarrow$ whole structure has to be simulated \Rightarrow more simulation time needed?

New collimator design, no RF fingers, no ferrite, GdfidL simulations

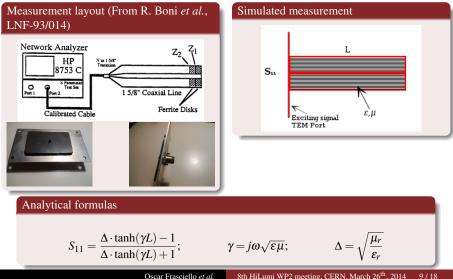
8th HiLumi WP2 meeting, CERN, March 26th, 2014


New collimator design, no RF fingers, no ferrite, GdfidL simulations \perp

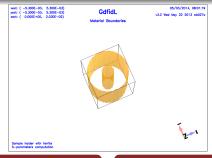
Oscar Frasciello et al.

8th HiLumi WP2 meeting, CERN, March 26th, 2014 7 / 18

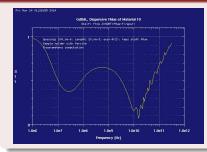
TT2-111R dispersive properties

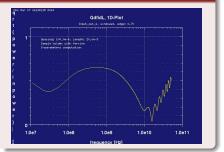


Oscar Frasciello et al. 8th HiLumi WP2 me

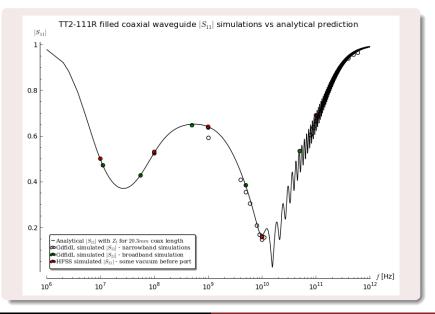

8th HiLumi WP2 meeting, CERN, March 26th, 2014 8 / 18

How to test correct code μ implementation?

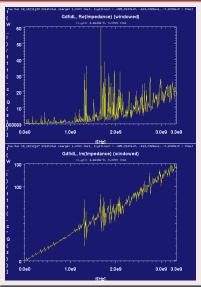

In our opinion it's a very useful method to arrange simple coaxial probe measurement simulations, in order to check for the numerically computed S-parameters to be fully in agreement with theoretical prediction.


GdfidL DUT model

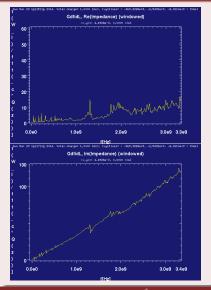
GdfidL analytical S₁₁


GdfidL computed S₁₁

Oscar Frasciello et al.

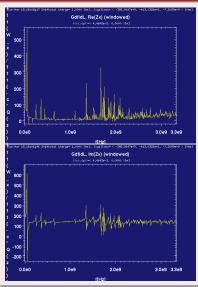

8th HiLumi WP2 meeting, CERN, March 26th, 2014 10 / 18

S_{11} results comparison

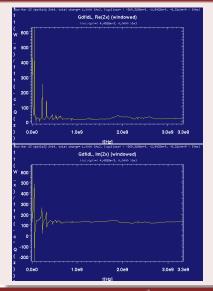

TT2-111R effects on new collimator design: Z_{\parallel}

Without TT2-111R

Oscar Frasciello et al.


With TT2-111R

8th HiLumi WP2 meeting, CERN, March 26th, 2014 12/18


TT2-111R effects on new collimator design: Z_{\perp}

Without TT2-111R

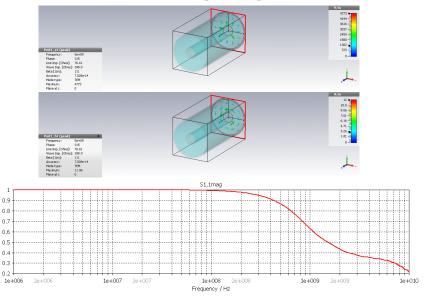
Oscar Frasciello et al.

With TT2-111R

8th HiLumi WP2 meeting, CERN, March 26th, 2014 13 / 18

Conclusions I

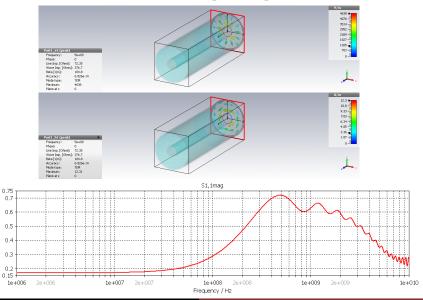
- New LHC secondary collimator design with BPM is thought to replace RF fingers with TT2-111R ferrite blocks;
- In order to accurately estimate the impedance of new collimators, dispersive properties of the ferrite have to be correctly managed by FDTD electromagnetic codes;
- We implemented TT2-111R measured magnetic permeability into GdfidL code, by means of a two-resonances Lorentz function fit;
- In order to check for the code to correctly simulate the dispersive properties, we performed a simple coaxial cable measurement simulation, so to compare the computed S-parameters to the well established analytical formulas, available from transmission lines theory;
- We also performed the same type of test with a FD code, HFSS, for benchmarking purposes;


Conclusions II

- Owing to the perfect agreement between the simulated *S*₁₁ and the theoretical prediction, we calculated the ferrite-filled secondary collimator wakes and impedances;
- Comparing the obtained results with those for the new collimator design, but without any RF finger or ferrite, it was clearly shown that TT2-111R determines a quite strong damping of HF modes, while some modes still lie in the LF range (up to $\sim 100 MHz$);
- A full understanding of LF damping(?) properties of ferrite cannot be reached without a proper definition of the whole material dispersive properties, i.e. μ AND ε;
- In future steps a complete $\varepsilon_{r_{TT2-111R}}$ implementation is expected; from this point of view some experimental data feedback would be very well accepted from CERN collegues.

Thanks for your kind attention

What comes from CST - points for discussion?


No vacuum before port computation

Oscar Frasciello et al.

What comes from CST - points for discussion?

Some vacuum before port computation

Oscar Frasciello et al.

⁸th HiLumi WP2 meeting, CERN, March 26th, 2014 18 / 18