USING ENERCY-PEAKS FOR MEASURING (OLD AND NEW) PARTICLE MASSES

* * * *

Kaustubh Agashe (University of Maryland)

++++

(with Roberto Franceschini, Sungwoo Hong, Doojin Kim, Kyle Wardlow: 1209.0772; 1212.5230; 1309.4776 and to appear)

Basic goal (simple!)

determine mass of mother by measuring energy/momentum of (visible) decay products

kinematics-based (independent of production mechanism)

SEVERAL TECHNIQUES SO FAR (MANY CASES)

Fully visible I (``golden'') invariant mass of decay products has Breit-Wigner peak

A have to be ``lucky"!

Fully visible II (not so easy)

fully hadronic top decay

Problem: all jetty + combinatorics (compounded by jets from initial/final state radiation)

`Partially" visible I (can be reconstructed)
1 daughter fully visible, other partially

semileptonic top decay (``less" jetty)

still ``issues": discrete ambiguity in reconstructing W; uses MET; still combinatorics (which W with which b)... Partially" visible II (cannot be reconstructed)
1 daughter fully visible, other fully invisible (maybe DM)
R-parity conserving SUSY, top-partner in T-parity little Higgs models...

 ϖ (generalized) transverse mass (M_{T2}): uses MET

 \odot razor: M_R based on (plausible) assumptions about boosts

Bottomline: (in my opinion) no slam dunk!

simpler; complementary (different systematics, e.g., avoid MET or combinatorics or assumptions about boosts)

NEW OBSERVATION TECHNIQUE

Basic assumptions

• 2-body decay: one daughter (fully) visible, massless:

- ...other (A) don't care (almost)!
- more assumptions later
- extensions/generalizations later

Energy (not invariant) of daughter

mono-chromatic and simple function of masses in rest frame of mother:

$$E_a^{\text{rest}} = \frac{M_B^2 - M_A^2}{2M_B}$$

\circ determine M_B if M_A known and E_a^{rest} measured

too simple to be practical/useful? hadron collider: mother has unknown boost; varies event to event is distribution in E^{lab}_a

Outline

- Peak (of lab. distribution) still retains this information...as simply, precisely, robustly!
- ``Test'' application (top mass): obtain approximation to theory curve Fit it to (simulated) data for extracting peak
- New physics (Cascade decay): of events general idea SUSY example
- Three-body decay
- Conclusions

"INVARIANCE" OF TWO-BODY DECAY KINEMATICS

Rectangle for fixed, but arbitrary boost
In general: E^{lab}_a = E^{rest}_a γ_B (1 + β_B cos θ_{aB})
Assume unpolarized mother: cos θ_{aB} is flat

 θ_{aB}

number of events

$$E_a^{\mathrm{rest}}\sqrt{rac{1-eta_B}{1+eta_B}}$$

$$E_a^{\text{rest}} \sqrt{\frac{1+\beta_B}{1-\beta_B}}$$

 E_a^{lab}

- ${\it o}$ no other $E_a^{\rm lab}$ gets larger contribution from given boost than does $E_a^{\rm rest}$
- \circ no other E_a^{lab} is contained in every rectangle (e.g., $\beta_B \rightarrow 0$)
- asymmetric on linear (symmetric on log...)

 $E_a^{\text{rest}} \sqrt{\frac{1-\beta_B}{1+\beta_B}}$

 $E_a^{\rm rest}$

 $E_a^{\text{rest}} \sqrt{\frac{1+\beta_B}{1-\beta_B}}$

(Generic) Boost distribution: "stacking" up rectangles (KA, Franceschini, Kim: 1209.0772) (see also Stecker: "Cosmic gamma rays") \bullet distribution of E_a^{lab} has peak at E_a^{rest} Image: Source boost distribution depends on production mechanism, mother mass, PDF's... small β_B (to be weighted) large β_B

 E_a^{lab}

 E_a^{rest}

Boost distributions: I & II

boost distribution for $2 \rightarrow 2$ (previous)

boost distribution for $2 \rightarrow 1$ (next)

Single mother production [e.g., gg \rightarrow Higgs; KK graviton (?): Chen, Davoudiasl, Kim] distribution of E_a^{lab} has ``kink" at E_a^{rest}

 E_a^{rest}

Boost distributions: III

Due to cuts (or highly boosted secondary mother), boost distribution vanishes close to $\beta_B = 0$

...plateau is not "generic"

`Invariant" (under boost distributions) feature in non-invariant (energy)distribution: subtle!

• vary collider energy

• vary ISR

 ...but, peak stays put, even though shape changes (broadens for more boosted top)

...accidents don't happen: no such invariance for p_T !

• peak (and shape) change...

(POSSIBLE) APPLICATIONS: "BETTER" ONES TO COME?!

General, simple Idea

a (visible, massless)

mother (B)

 determine M_B (if M_A known) using E_a^{rest} (measured from peak in E_a^{lab}) $E_a^{\text{rest}} = \frac{M_B^2 - M_A^2}{2M_B}$

(independent of production mechanism of unpolarized mother)

Measuring the peak

ø peak can be wide (difficult to read-off value ``by eye")

extract peak by fitting to ``theory curve": a la Breit-Wigner [simple (2-parameter), analytic, model-independent function]

 ...but exact, analytic formula difficult to obtain here (depends on boost distribution, thus PDF's...)

APPROXIMATION TO THEORY CURVE

Do know (analytically) properties of distribution, f

value of f(x) remains the same under x ↔ ¹/_x (x ≡ ^{E^{iab}}/_{E^{rest}})
f is maximized at x = 1

- f vanishes as x approaches 0 or ∞
- f becomes a δ -function in some limit of its parameters

Ansatz (based on properties)

width parameter

$$f(x) = K_1^{-1}(p) \exp\left[-\frac{p}{2}\left(x + \frac{1}{x}\right)\right]$$
Bessel function (normalization)

simple, but not unique "peak finder"...

``Test" on b-jet energy from top quark decay (production unpolarized...)

- bottom (almost)``massless'': peak does not shift, shape property negligibly violated
- good fit for heavier ``top" quark as well: different PDF's, boost distribution (width parameter encompasses this variation)

"New" Breit-Wigner

Based on theory fits, assume

$$f(x) = K_1^{-1}(p) \exp\left[-\frac{p}{2}\left(x + \frac{1}{x}\right)\right]$$

FURTHER TEST: FIT TO (SIMULATED)DATA

(Again) Top quark decay: basic idea

neglect m_b in $E_b^{
m rest}$

• Peak in measured b-jet energy distribution $\approx \frac{M_t^2 - M_W^2}{2M_t}$ • Assuming M_W (but no need to detect it at all!), get M_t

Top mass measurement: details

- Fully leptonic (opposite flavor) and 2 b-tags, with 5/fb at LHC7: expect 4000 S vs. 200 B
- IOO pseudo-experiments
- ATLAS/CMS choice of (mild) cuts: 1209.2393; ATLAS-CONF-2012-097
- neglected background

Result

- consistent with input value
- fitting not spoiled by cuts or detector effects

Discussion

• neglected hard radiation from bottom (3-body): suppressed by α_s/π + jet-veto (calculable in QCD)

- safe from soft radiation off of bottom
- safe from initial state radiation
- no combinatorics (include both b's)
- independent of production mechanism (single or pair; uncertainty in PDF's; new physics or SM) as long as unpolarized

Comparison (simplified!) of methods for top mass

- complementary/cross-check: different systematics, e.g., use of MET in some earlier methods vs. not here
- theory systematics, based on (small) parameters:

 δ_{prod} (PDF's, new physics); ϵ_{FSR} (NLO, jet-veto); $f_{\text{pol.}}$ (new physics)

- error in top mass with
 - matrix element; full reconstruction (combinatorics): δ_{prod}
 - **b-jet energy-peak:** $\epsilon_{\text{FSR}} \times \delta_{\text{prod.}} + f_{\text{pol.}}$

 $\epsilon_{\rm FSR}$ for QCD production is calculable

• "test" for applications to new physics

What about real data? CMS email to us in July, 2013:

"...I guess you will be pleased to hear that we have now someone within CMS who is planning to try an mt extraction with the 8 TeV data following your Ansatz....

However, since that group is only starting now, we can't expect to see results too soon..."

....October, 2013: contact with M. Irfan Asghar from CMS about actual implementation!

(Preliminary results with semileptonic and dileptonic)

Can ATLAS be far behind?!

A NEW PHYSICS APPLICATION (METHOD "TESTED" ON TOP MASS): CASCADE DECAY

(KA, Franceschini, Kim: 1309.4776)

Two energy peaks

Based on new observation:

Edge in invariant mass (old)

 \circ On-shell intermediate particle \longrightarrow (sharp) edge

= 3 (independent) observables for determining 3 masses!

...(in principle) determine invisible particle mass without measuring MET!

CASCADE DECAY IN SUSY (AN EXAMPLE)

Gluino, sbottom, neutralino

Instant SUSY: 1st/2nd generation squarks heavy, stop/sbottom and gluino, Higgsino light

Double (b-jet energy) peak

CASE I - Separated Peaks (No BG)

o mass hierarchy: $M_{\tilde{g}} \approx M_{\tilde{b}} \gg M_{\chi_1^0}$

`soft"& hard b-jets

Background

• $\overline{t}tbb$ reducible and Z + 4b irreducible

 \odot template for background: $N_{p'} \exp\left(-p'\sqrt{E}\right)$

Results

- $M_{\tilde{g}} = 1000$ GeV; $M_{\tilde{b}} = 930$ GeV and $M_{\chi_1^0} = 100$ GeV with 300 / fb at LHC14
- 3 (2 signal + I background) template fit (assume this model)
- ittle sensitivity to $M_{\chi_1^0}$: $2\sqrt{E_b^{\text{peak 1}}E_b^{\text{peak 2}}} \approx M_{bb}^{\text{max}}$

ansatz/fitting function works for (boost distribution of) a "secondary" mother as well!

Other/cleaner possibilities

 a \neq b: peaks in different distributions (no ``pollution'' between peaks)

• lepton instead of jet

Generalizations

- Massive daughter
- Three-body decay with 2 visible (e.g., offshell sbottom): for fixed invariant mass of 2 visible, apply 2-body result

THREE-BODY DECAY: ONE VISIBLE

Endpoint of distribution in rest frame

Sector Endpoint related simply to masses

Peak of distribution in [ab] frame $E_a^{\text{lab,peak}} < E_a^{\text{rest,max}}$

Obtain inequality for masses

Istinguishing Z_3 vs. Z_2 -stabilized dark matter (DM): decay into 1 visible + 2 vs. 1 DM ("same" final state!)

(KA, Franceschini, Kim, Wardlow: 1212.5230)

Conclusions

 Two body decay of unpolarized mother at hadron colliders:
 peak in energy distribution of massless daughter same

as rest frame energy (simple function of masses)

- Obtain approximation to theory curve (for fitting to data to extract peak)
- Application(s): top quark mass (test) new particles decaying semi-invisibly: extract all masses from cascade decay (e.g., gluino to sbottom...)

BACK-UP

Single Rectangle ($x = \frac{E_a^{\text{lab}}}{E_a^{\text{rest}}}$): $\frac{1}{\Gamma} \frac{d\Gamma}{dx}\Big|_{\text{fixed } \gamma_B} = \frac{\Theta(x - \gamma_B + \sqrt{\gamma_B^2 - 1})\Theta(-x + \gamma_B + \sqrt{\gamma_B^2 - 1})}{2\sqrt{\gamma_B^2 - 1}}$

Stacking up rectangles:

 $f(x) \equiv \frac{1}{\Gamma} \frac{d\Gamma}{dx} = \int_{\frac{1}{2}\left(x + \frac{1}{x}\right)}^{\infty} d\gamma_B \frac{g(\gamma_B)}{2\sqrt{\gamma_B^2 - 1}}$

Slope:

 $f'(x) = \frac{\operatorname{sgn}(1-x)}{2x} g\left(\frac{1}{2}\left(x+\frac{1}{x}\right)\right)$

Behavior at x = 1:

 $f'(x = 1) \propto g(1) = 0 \Rightarrow$ extremum or f'(x) flips its sign at $x = 1 \Rightarrow$ a cusp f(x) is positive and vanishes for both $x \to 0$ and $x \to \infty$ \Rightarrow peak at E_a^{rest}

``Massive'' daughter

- argument goes thru' (rectangle contains E_a^{rest} ...) even for massive daughter if boost distribution restricted to $\gamma_B < \left[2\left(\gamma_a^{\text{rest}}\right)^2 - 1\right]$
- This critical boost is typically large value for massive, but ``light'' daughter: e.g., for bottom from top quark decay ($\gamma_b^{\text{rest}} \approx 15 \Rightarrow \gamma_{\text{top}} \stackrel{<}{\sim} 500$ suffices)

Another SUSY spectrum: sensitivity to neutralino mass

Overlapping peaks

Ansatz can extract 2 peaks separately (assuming this model)

Other (possibly) related work

• razor (pair-produced polarized/unpolarized mothers): $M_R = 2E_a^{\text{rest}}$, but assuming (a) mother at rest in COM of two mothers and (b) no transverse boost of this COM in lab frame

 I107.4460, 1305.6150: use entire energy distribution, no (explicit) mention of location of peak (local feature)

So "Jacobian" peak at M_W in $2 \times p_T^{\text{lepton}}$ and M_T (only) for single W production (+ events at this peak different than at energy-peak)

(Motivation for top mass: fundamental parameter of SM;enters calculation of other observables) Conventional methods

• Basic idea: reconstruct (full) decay of top

- can achieve O(0.6 GeV) uncertainty at LHC14, with 300/fb
- further gain may be possible with 3000/fb by using a more extended approach to constraining uncertainties using data

 Simulation (using SM matrix element in production) is used to handle combinatorics

Latest: endpoint of M_{bl}

- more cleanly interpreted as measurements of the pole quark mass
- combinatorics resolved without assuming SM matrix element in production
 resulting top quark mass immune to possible contaminations from New Physics in production of top quarks

 can provide precision competitive with more conventional methods, especially using 3000/fb at LHC14

Comparison between M_{bl} and energy-peak

energy-peak has larger statistics

 M_{bl} more robust (against hard radiation from bottom; polarized top quarks)

Using energy-peak for searches

- if background is flat or peaks elsewhere from signal
- Stops (Low: 1304.0491):

for $\tilde{t} \to b \tilde{\chi}_1^+$, peak in E_b^{lab} at $\left(M_{\tilde{t}}^2 - M_{\tilde{\chi}_1^+}^2\right) / (2M_{\tilde{t}})...$ can be $\gg \left(M_t^2 - M_W^2\right) / (2M_t)$ from $t\bar{t}$ background (from SM or from $\tilde{t} \to t \tilde{\chi}_1^0$)