Temperature dependence of the hyperfine fields of 111In in sapphire (Al$_2$O$_3$) single crystals

HFI / NQI, CERN, 2010

Michael Steffens1 Jakob Penner1 Hassan Kamleh2
Reiner Vianden1

1Helmholtz - Institut für Strahlen- und Kernphysik, Universität Bonn, Germany

2Department of physics, Faculty of sciences, University of Damascus, Syria
Introduction

- Basing on previous measurements of undoped Al_2O_3

 Penner and Vianden, Hyperfine Interactions 158(1), 389 (2004)

- Temperature dependent measurements of the electric field gradient (EFG) in doped Al_2O_3

- Experimental technique: time-differential perturbed angular correlation (TDPAC)

- Investigation of the ”electron capture after effect”

- Possible application: electron mobility studies in semiconductors and insulators
Electron capture decay of 111In

$(p) + e^- \rightarrow (n) + \nu_e$

Half life of the (highly) ionized state depending in the electronic surrounding

- vacuum: $t_{1/2}$ large
- metallic: $t_{1/2} \approx 10^{-12}$ s
- insulating: $t_{1/2} \approx 10^{-9}$ s, influenced by electron mobility and density
Experimental technique: TDPAC

$t_{1/2} = 2.73$ d
$t_{1/2} = 0.12$ ns
$t_{1/2} = 85$ ns
$Q_{5/2} = 0.83(13)$ b

Hyperfine interaction of the EFG with the nuclear quadrupole moment Q

\Rightarrow Quadrupole interaction frequency $\nu_Q = \frac{eQV_{zz}}{\hbar}$
Material:
(0001) oriented single crystals
(5 × 5) mm² pieces from a 2” × 430 µm wafer
≈ 99.9999% purity

Lattice parameters:
\(a = 4.75 \text{ Å}, c = 12.99 \text{ Å}\)

Bandgap = 9.9 eV
111In in undoped Al$_2$O$_3$

- Ion implantation of 111In at BONIS (BONn Isotope Separator)
- Rapid thermal annealing ($T_a = 1273$ K, 2 min, N$_2$-flow)
Temperature dependence of the EFG in doped Al$_2$O$_3$

- Co-implantation with overlapping implantation profile

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Fluence (atoms/cm2)</th>
<th>Effective charge subst. Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>111In / 111Cd</td>
<td>160</td>
<td>10^{12}</td>
</tr>
<tr>
<td>Cr</td>
<td>80</td>
<td>$10^{13}/10^{14}$</td>
</tr>
<tr>
<td>Mg</td>
<td>40</td>
<td>10^{14}</td>
</tr>
<tr>
<td>P</td>
<td>60</td>
<td>10^{13}</td>
</tr>
<tr>
<td>Si</td>
<td>50</td>
<td>$5 \cdot 10^{13}$</td>
</tr>
</tbody>
</table>

PAC probe nucleus

750 K

- In: 750 K
- In + Cr (1E13): 750 K
- In + Mg: 750 K
- In + P: 750 K

900 K (875 K)

- In: 900 K
- In + Cr (1E13): 900 K
- In + Mg: 900 K
- In + P: 875 K
- In + Si: 750 K
- In + Si: 900 K
Temperature dependence of ν_Q

$$\nu_Q(T) = 228(2) \text{ MHz} - 1.6(3) \cdot 10^{-2} \text{ MHz/K} \cdot T$$
Temperature dependance of the static interaction f_S

In w/o co-implantation (1E12 ions/cm2)
In + Si (5E13 ions/cm2)
In + Mg (1E14 ions/cm2)
In + P (1E13 ions/cm2)
In + Cr (1E13 ions/cm2)
In + Cr (1E14 ions/cm2)

fraction f_s [%]
sample temperature [K]
Characterization of the EFG in relation to the sample temperature in an insulator (Al$_2$O$_3$)

Changes of this relation following doping of Cr, Mg, P and Si

 - Minor temperature dependence of ν_Q
 - Doping of Cr has a large impact at higher Cr fluences (fluence dependent effect)

Relaxation of the atomic shell of 111Cd after electron capture gives us information about the electron mobility and the conductivity of the insulator