The physics programme of the LHC

Michelangelo L. Mangano
Theoretical Physics Unit
Physics Department
CERN, Geneva

Sept 13 2010
The Standard Model of fundamental interactions: MATTER

ALL ORDINARY MATTER BELONGS TO THIS GROUP.

THESE PARTICLES EXISTED JUST AFTER THE BIG BANG.

NOW THEY ARE FOUND ONLY IN COSMIC RAYS AND ACCELERATORS.

LEPTONS

- electron
 - Electric charge -1.
 - Responsible for electricity and chemical reactions.
- electron neutrino
 - Electric charge 0.
 - Rarely interacts with other matter.
- muon
 - A heavier relative of the electron.
- muon neutrino
 - Created with muons when some particles decay.
- tau
 - Heavier still.
- tau neutrino
 - Not yet observed directly.

QUARKS

- up
 - Electric charge $+\frac{2}{3}$.
 - Protons have 2 up quarks.
- down
 - Electric charge $-\frac{1}{3}$.
 - Neutrons have 1 up quark.
- charm
 - A heavier relative of the up.
- strange
 - A heavier relative of the down.
- top
 - Heavier still, recently observed.
- bottom
 - Heavier still.

ANTIMATTER

Each particle also has an antimatter counterpart ... sort of a mirror image.
<table>
<thead>
<tr>
<th>FORCE</th>
<th>COUPLES TO:</th>
<th>FORCE CARRIER:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetism</td>
<td>electric charge</td>
<td>photon (m=0)</td>
</tr>
<tr>
<td>“weak” force</td>
<td>“weak” charge</td>
<td>W^\pm (m=80) Z^0 (m=91)</td>
</tr>
<tr>
<td>“strong” force</td>
<td>“colour”</td>
<td>8 gluons (m=0)</td>
</tr>
<tr>
<td>gravity</td>
<td>energy</td>
<td>graviton (m=0)</td>
</tr>
</tbody>
</table>
The Standard Model of fundamental interactions:

<table>
<thead>
<tr>
<th>FORCE</th>
<th>COUPLES TO:</th>
<th>FORCE CARRIER:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unified electroweak force</td>
<td>electroweak charge</td>
<td>photon ((m=0)) W^\pm ((m=80)) Z^0 ((m=91))</td>
</tr>
<tr>
<td>“strong” force</td>
<td>“colour”</td>
<td>8 gluons ((m=0))</td>
</tr>
<tr>
<td>gravity</td>
<td>energy</td>
<td>graviton ((m=0))</td>
</tr>
</tbody>
</table>

.... plus a scalar boson, to break electroweak symmetry and give particles their mass

| mass | Higgs \((m=??)\) |
The forthcoming steps
The forthcoming steps

- Complete the **verification** of the Standard Model:
 - Higgs boson and EW symmetry breaking (EWSB)
The forthcoming steps

- Complete the **verification** of the Standard Model:
 - Higgs boson and EW symmetry breaking (EWSB)

- Solve **open experimental issues** of particle physics:
 - dark matter/matter-antimatter/nu masses
The forthcoming steps

- Complete the **verification** of the Standard Model:
 - Higgs boson and EW symmetry breaking (EWSB)

- Solve **open experimental issues** of particle physics:
 - dark matter/matter-antimatter/nu masses

- Address **open theoretical questions**:
 - a long list of “why?”
The forthcoming steps

- Complete the verification of the Standard Model:
 - Higgs boson and EW symmetry breaking (EWSB)

- Solve open experimental issues of particle physics:
 - dark matter/matter-antimatter/nu masses

- Address open theoretical questions:
 - a long list of "why?"
The Higgs boson and particles’ masses

Light propagating in a medium is slowed down by its continuous interaction with the medium itself.
The Higgs boson and particles' masses

Light propagating in a medium is slowed down by its continuous interaction with the medium itself.
The Higgs boson and particles’ masses

Light propagating in a medium is slowed down by its continuous interaction with the medium itself.
The Higgs boson and particles’ masses

Light propagating in a medium is slowed down by its continuous interaction with the medium itself.
The Higgs boson and particles’ masses

Light propagating in a medium is slowed down by its continuous interaction with the medium itself.

The time it takes to move across the medium is longer than if light were propagating in the vacuum.

\[\Rightarrow c_{\text{medium}} < c_{\text{vacuum}} \]
The Higgs boson and particles’ masses

Light propagating in a medium is slowed down by its continuous interaction with the medium itself.

\[c_{\text{medium}} < c_{\text{vacuum}} \]

The time it takes to move across the medium is longer than if light were propagating in the vacuum,

Think of the Higgs field as being a continuum embedding the whole Universe. Particles interacting with it will undergo a similar “slow-down” phenomenon. Rather than “slowing down”, however, the interaction with the Higgs medium gives them “inertia” => mass
The number “v” is a universal property of the Higgs field background. The quantity “λ” is characteristic of the particle moving in the Higgs field. Particles which have large λ will have large mass, with $m \propto \lambda v$

Now the question of “why does a given particle have mass m” is replaced by the question “why does a given particle couple with the Higgs field with strength $\lambda \propto m / v$”

However at least now we have a mathematical model to understand how particles acquire a mass.
Like any other medium, the Higgs continuum background can be perturbed. Similarly to what happens if we bang on a table, creating sound waves, if we “bang” on the Higgs background (something achieved by concentrating a lot of energy in a small volume) we can stimulate “Higgs waves”. These waves manifest themselves as particles, the so-called Higgs bosons
Like any other medium, the Higgs continuum background can be perturbed. Similarly to what happens if we bang on a table, creating sound waves, if we “bang” on the Higgs background (something achieved by concentrating a lot of energy in a small volume) we can stimulate “Higgs waves”. These waves manifest themselves as particles, the so-called Higgs bosons.

What is required is that the energy available be sufficient ⇒ LHC !!!
The LHC was designed to answer one question:
The LHC was designed to answer one question:

is electroweak symmetry broken as postulated in the Higgs mechanism of the SM?

- SM production and decay rates well known
- Detector performance for SM decays well understood
- $115 < m_H < 200$ from LEP and EW fits in the SM (LEP/SLC/Tevatron)
Summary of SM Higgs discovery potential

Within 2-3 yrs of effective running we should have an answer
IF Higgs seen with SM production/decay rates, but outside SM mass range:

• new physics to explain EW fits, or
• problems with LEP/SLD data

In either case,

• easy prey with low luminosity up to ~ 800 GeV, but more lum is needed to understand why it does not fit in the SM mass range!

IF NOT SEEN UP TO $m_H \sim 0.8$-1 TeV GeV:

$$\sigma < \sigma_{SM}: \Rightarrow \text{new physics}$$

or

$$\text{BR}(H \rightarrow \text{visible}) < \text{BR}_{SM}: \Rightarrow \text{new physics}$$

or

$m_H > 800$ GeV: expect WW/ZZ resonances at $\sqrt{s} \sim$ TeV $\Rightarrow \text{new physics}$
Particle masses play a crucial role in determining the nature of the universe as we know it:
Particle masses play a crucial role in determining the nature of the universe as we know it:

m_{electron} determines the “size of things”

m_{electron} vs $m_{\text{down}}-m_{\text{up}}$ determines the rates of nuclear fission and fusion processes, defining the lifetime of stars, as well as the abundance of primordial elements in the early universe
Particle masses play a crucial role in determining the nature of the universe as we know it:

- m_{electron} determines the “size of things”
- m_{electron} vs $m_{\text{down}}-m_{\text{up}}$ determines the rates of nuclear fission and fusion processes, defining the lifetime of stars, as well as the abundance of primordial elements in the early universe

So does the family structure
Particle masses play a crucial role in determining the nature of the universe as we know it:

$m[\text{electron}]$ determines the “size of things”

$m[\text{electron}]$ vs $m[\text{down}] - m[\text{up}]$ determines the rates of nuclear fission and fusion processes, defining the lifetime of stars, as well as the abundance of primordial elements in the early universe

So does the family structure

only with 3 generations can the SM accommodate CP violation, and possibly induce a baryon asymmetry during the evolution of the universe
Particle masses play a crucial role in determining the nature of the universe as we know it:

- $m[\text{electron}]$ determines the “size of things”

- $m[\text{electron}]$ vs $m[\text{down}]-m[\text{up}]$ determines the rates of nuclear fission and fusion processes, defining the lifetime of stars, as well as the abundance of primordial elements in the early universe

So does the family structure

- only with 3 generations can the SM accommodate CP violation, and possibly induce a baryon asymmetry during the evolution of the universe

Intriguing questions arise from the spectrum of and mixings among different flavours
Particle masses play a crucial role in determining the nature of the universe as we know it:

- $m[\text{electron}]$ determines the “size of things”
- $m[\text{electron}]$ vs $m[\text{down}] - m[\text{up}]$ determines the rates of nuclear fission and fusion processes, defining the lifetime of stars, as well as the abundance of primordial elements in the early universe.

So does the family structure

- Only with 3 generations can the SM accommodate CP violation, and possibly induce a baryon asymmetry during the evolution of the universe.

Intriguing questions arise from the spectrum of and mixings among different flavours

Since $m[\text{top}] = 170 \text{ GeV}$, $\lambda[\text{top}] = 1$: **coincidence**?
In several theories beyond the SM, $m[\text{top}] \approx 170 \text{ GeV}$ is required for a dynamical breaking of the EW symmetry: **message**?
Particle masses play a crucial role in determining the nature of the universe as we know it:

- $m[\text{electron}]$ determines the “size of things”

- $m[\text{electron}]$ vs $m[\text{down}]-m[\text{up}]$ determines the rates of nuclear fission and fusion processes, defining the lifetime of stars, as well as the abundance of primordial elements in the early universe

So does the family structure

- only with 3 generations can the SM accommodate CP violation, and possibly induce a baryon asymmetry during the evolution of the universe

Intriguing questions arise from the spectrum of and mixings among different flavours

Since $m[\text{top}]=170$ GeV, $\lambda[\text{top}]=1$: coincidence?
In several theories beyond the SM, $m[\text{top}]\approx170$ GeV is required for a dynamical breaking of the EW symmetry: message?

The precise identification of the cause of electroweak symmetry breaking phenomenon, of its dynamics and of the origin of the flavour structure, are therefore crucial goals for the progress of our understanding of Nature
The forthcoming steps

- Complete the verification of the Standard Model:
 - Higgs boson and EW symmetry breaking (EWSB)

- Solve open experimental issues of particle physics:
 - dark matter/matter-antimatter/nu masses

- Address open theoretical questions:
 - a long list of “why?”
• what is **Dark Matter**?
• what is the origin of the matter-antimatter asymmetry of the Universe?
• what is the origin of neutrino masses?
•
• why SU(3)xSU(2)xU(1)? are there new forces? GUT?
• why 3 generations, why their properties?
 • mass spectra
 • mixing patterns
• pointlike? substructures? strings?
•
• why D=3+1?
• what is **Dark Energy**?
Furthermore:

• Detailed studies of high-density and high-temperature QCD matter, using Pb-Pb collisions at $\sqrt{S}=5.5\ \text{TeV/nucleon}$ (2.75 TeV in the 2010-2011 runs)

• nuclear matter in a deconfined phase, eqn of state of quark-gluon matter

• production/propagation/evolution of “high-Q^2” probes

• Measurement of total, elastic and diffractive proton-proton cross sections

• Measurement of forward particle production (of relevance for the modeling of cosmic ray showers in the atmosphere)

• Search for magnetic monopoles
LHC discoveries: a (partial) shopping list
LHC discoveries: a (partial) shopping list

- **Higgs boson**: observe, measure properties, unveil nature of EW symmetry breaking
LHC discoveries: a (partial) shopping list

- **Higgs boson**: observe, measure properties, unveil nature of EW symmetry breaking
- **Supersymmetry**:
 - new evolution of Einstein’s picture of *space-time* symmetry
 - predicts a partner for each known particle
 - predicts the partner of photon, Z^0 or H as *dark matter* candidate
 - predicts new sources of *matter-antimatter* asymmetry
 - implies *unification of couplings* at GUT scale (and *proton decay*?)
 - links *gravity* to other forces, supporting *superstrings* as ultimate theory
LHC discoveries: a (partial) shopping list

- **Higgs boson**: observe, measure properties, unveil nature of EW symmetry breaking
- **Supersymmetry**:
 - new evolution of Einstein’s picture of **space-time** symmetry
 - predicts a partner for each known particle
 - predicts the partner of photon, Z^0 or H as **dark matter** candidate
 - predicts new sources of **matter-antimatter** asymmetry
 - implies **unification of couplings** at GUT scale (and **proton decay**?)
 - links **gravity** to other forces, supporting **superstrings** as ultimate theory
- **New forces**: detect new forces, e.g. partners of W/Z bosons restoring the left-right symmetry of the Universe
LHC discoveries: a (partial) shopping list

- **Higgs boson**: observe, measure properties, unveil nature of EW symmetry breaking
- **Supersymmetry**:
 - new evolution of Einstein’s picture of space-time symmetry
 - predicts a partner for each known particle
 - predicts the partner of photon, \(Z^0\) or H as **dark matter** candidate
 - predicts new sources of **matter-antimatter** asymmetry
 - implies **unification of couplings** at GUT scale (and **proton decay**?)
 - links **gravity** to other forces, supporting **superstrings** as ultimate theory
- **New forces**: detect new forces, e.g. partners of W/Z bosons restoring the left-right symmetry of the Universe
- **New generations of quarks and leptons**: new sources of matter-antimatter asymmetry
LHC discoveries: a (partial) shopping list

- **Higgs boson**: observe, measure properties, unveil nature of EW symmetry breaking
- **Supersymmetry**:
 - new evolution of Einstein’s picture of space-time symmetry
 - predicts a partner for each known particle
 - predicts the partner of photon, Z^0 or H as dark matter candidate
 - predicts new sources of matter-antimatter asymmetry
 - implies unification of couplings at GUT scale (and proton decay?)
 - links gravity to other forces, supporting superstrings as ultimate theory
- **New forces**: detect new forces, e.g. partners of W/Z bosons restoring the left-right symmetry of the Universe
- **New generations of quarks and leptons**: new sources of matter-antimatter asymmetry
- **New layer of matter**: identify substructure of so-far-elementary quarks
LHC discoveries: a (partial) shopping list

- **Higgs boson**: observe, measure properties, unveil nature of EW symmetry breaking
- **Supersymmetry**:
 - new evolution of Einstein’s picture of *space-time* symmetry
 - predicts a partner for each known particle
 - predicts the partner of photon, Z^0 or H as **dark matter** candidate
 - predicts new sources of **matter-antimatter** asymmetry
 - implies **unification of couplings** at GUT scale (and **proton decay**?)
 - links **gravity** to other forces, supporting **superstrings** as ultimate theory
- **New forces**: detect new forces, e.g. partners of W/Z bosons restoring the left-right symmetry of the Universe
- **New generations of quarks and leptons**: new sources of matter-antimatter asymmetry
- **New layer of matter**: identify substructure of so-far-elementary quarks
- **New dimensions of space-time**: modifications of Newton’s law, new picture of Big Bang in its early evolution
For comparison:
- at the SppS collider, the first run (1982) was a few 10^{-3} nb$^{-1}$, followed 1 year later by 20 nb$^{-1}$ (W discovery)
- at the Tevatron collider, the first run (1985) was a few 10^{-3} nb$^{-1}$, followed 2 years later by 20 nb$^{-1}$

The LHC has surpassed this after few months of operations, and is still on an exponential ramp!
Plans for the 2010-11 data taking

- Run at half maximum energy, namely 3.5 TeV/beam
- Increase luminosity up to $10^{32}\text{cm}^{-2}\text{s}^{-1}$ (now: 10^{31}) by early November
- Switch to Pb-Pb collisions (~4 weeks) in mid-November
- ~2 months technical stop over Xmas
- Restart, run steady at ~$10^{32}\text{cm}^{-2}\text{s}^{-1}$ through 2011, to collect 1 fb$^{-1}$
- 4-week Pb-Pb run at end 2011
First LHC results

- 13 journal publications, by all 4 large experiments
- 100s of analysis notes detailing public results presented to International Conferences
- Much improved determination of general properties of proton-proton collisions at 900 GeV, 2.7 TeV and 7 TeV
- First challenges for MC event generators and modeling of pp collisions at 7 TeV
- Rediscovered the full SM particle content (including W/Z bosons, top quark)
- Crossed over into the territory of sensitivity to new-physics phenomena beyond the reach of any previous experiment
Modeling of inclusive properties of pp collisions

Multiplicity distributions

antiΛ/Ks^0 ratio

Momentum spectra
Probing the quark structure:
limits on the mass of possible excited quarks

\[m[q^*] > 1.26 \text{ TeV} \]
(best previous limit, from the Tevatron, was 0.87 TeV)
Prospects for 2011 run: Higgs

ATLAS H→WW→ll

Combination of 0j and 2j, H to WW to ll

- $m_H = 130$ GeV
- $m_H = 150$ GeV
- $m_H = 160$ GeV
- $m_H = 170$ GeV
- $m_H = 180$ GeV

CMS H→WW→ll

CMS Preliminary

Projection for $\sqrt{s} = 7$ TeV, $L = 1$ fb$^{-1}$

- Cut on Neural Network Output
- Cut Based Analysis

ATLAS preliminary estimate
Prospects for 2011 run: Supersymmetry

Jets+E_T^{miss} Signature
The steps after 2011, in a nutshell

- At least 1 year shut-down in 2012, to prepare the LHC for 14 TeV:
 - consolidate the protection against quenches
 - test the ability of dipoles to sustain the maximum current, and re-train the weak ones
- 2-3 year run from 2013, at 14 TeV and L=few \(10^{33}\) cm\(^{-2}\)s\(^{-1}\), i.e. O(10 fb\(^{-1}\)/yr)
- Shut down to prepare the LHC for L=few \(10^{34}\) cm\(^{-2}\)s\(^{-1}\)
< 1973: theoretical foundations of the Standard Model
- renormalizability of SU(2)×U(1) with Higgs mechanism for EWSB
- asymptotic freedom, QCD as gauge theory of strong interactions
- KM description of CP violation

Followed by 30 years of consolidation:
- technical theoretical advances (higher-order calculations, lattice QCD, ...)
- experimental verification, via discovery of
 - Fermions: charm, 3rd family (USA)
 - Bosons: gluon, W and Z (Europe; ... waiting to add the Higgs ...)
- experimental consolidation, via measurement of
 - EW radiative corrections
 - running of α_s
 - CKM parameters

It's unlikely it will take less than 30 yrs to clarify and consolidate the understanding of new phenomena to be unveiled by the LHC!
The LHC is ready for this exciting new era in particle physics!