# **Single-Cell Standing Wave Structures: Design**

Valery Dolgashev, Sami Tantawi (SLAC) Yasuo Higashi, Toshiyasu Higo (KEK)

X-band Structure Testing Workshop *KEK, Tsukuba, Japan, May 23-24, 2008* 

# Outline

- Introduction
- Strategy
- Structures

# **Single Cell Accelerator Structures**

### Goals

• Study rf breakdown in practical accelerating structures: dependence on circuit parameters, materials, cell shapes and surface processing techniques

### Difficulties

• Full scale structures are long, complex, and expensive

### Solution

- Single cell Traveling wave (TW) and single cell standing wave (SW) structures with properties close to that of full scale structures
- Reusable couplers

### We want to predict breakdown behavior for practical structures

### Reusable coupler: TM<sub>01</sub> Mode Launcher

Pearson's RF flange



Cutaway view of the mode launcher



Two mode launchers

Surface electric fields in the mode launcher  $E_{max}$ = 49 MV/m for 100 MW

S. Tantawi, C. Nantista



# Strategy

#### Geometry

- Stored energy
- Electric field for same magnetic field
- Choke
- Choke WR90 coupler
- Shunt impedance, iris size, etc.
- ...

#### Materials

- CuZr
- Molybdenum

### Coatings

- TiN
- ...

. . .

#### Some samples tested

- 1-C-SW-A5.65-T4.6-Cu
- 1-C-SW-A5.65-T4.6-Cu-TiN
- 3-C-SW-A5.65-T4.6-Cu
- 1-C-SW-A3.75-T2.6-Cu
- 1-C-SW-A3.75-T1.66-Cu

#### To be tested

- 1-C-SW-A5.65-T4.6-Cu-Choke
- 1-C-SW-A5.65-T4.6-Cu-PBG
- 1-C-SW-A2.75-T2.0-Cu
- 3-C-SW-A5.65-T4.6-Cu-WR90
- One-C-SW-A3.75-T2.6-CuZr
- One-C-SW-A5.65-T4.6-CuZr
- ...

### Parameters of periodic structures

|                               |                   | A3.75-       | A3.75-       | A5.65-<br>T4.6- | A5.65-      |          |
|-------------------------------|-------------------|--------------|--------------|-----------------|-------------|----------|
| Name                          | A2.75-T2.0-<br>Cu | T1.66-<br>Cu | T1.66-<br>Cu | Choke<br>-Cu    | T4.6-<br>Cu | T53VG3   |
| Stored Energy [J]             | 0.153             | 0.189        | 0.189        | 0.333           | 0.298       | 0.09     |
| Q-value                       | 8.59E+03          | 8.82E+03     | 8.56E+03     | 7.53E+03        | 8.38E+03    | 6.77E+03 |
| Shunt Impedance<br>[MOhm/m]   | 102.891           | 85.189       | 82.598       | 41.34           | 51.359      | 91.772   |
| Max. Mag. Field [A/m]         | 2.90E+05          | 3.14E+05     | 3.25E+05     | 4.20E+05        | 4.18E+05    | 2.75E+05 |
| Max. Electric Field<br>[MV/m] | 203.1             | 268.3        | 202.9        | 212             | 211.4       | 217.5    |
| Losses in a cell [MW]         | 1.275             | 1.54         | 1.588        | 3.173           | 2.554       | 0.953    |
| a [mm]                        | 2.75              | 3.75         | 3.75         | 5.65            | 5.65        | 3.885    |
| a/lambda                      | 0.105             | 0.143        | 0.143        | 0.215           | 0.215       | 0.148    |
| Hmax*Z0/Eacc                  | 1.093             | 1.181        | 1.224        | 1.581           | 1.575       | 1.035    |
| t [mm]                        | 2                 | 1.664        | 2.6          | 4.6             | 4.6         | 1.66     |
| Iris ellipticity              | 1.385             | 0.998        | 1.692        | 1.478           | 1.478       | 1        |

### Low shunt impedance structures



#### 1C-SW-A5.65-T4.6-Cu

### 3C-SW-A5.65-T4.6-Cu

# Single-Cell-SW-A5.65-T4.6-Cu



### Three-Cell-SW-A5.65-T4.6-Cu, 10 MW input







Resonance at 11.4249 GHz

(SLANS 11.424 GHz)

(SLANS 1.075)

 $\beta = 1.083$ 

(SLANS 230 MV/m)







# Manufacturing of 3-cell SW structure (3C-SW-A5.65-T4.6-Cu-KEK#1) at KEK,



Yasuo Higashi, KEK

### 1C-SW-A5.65-T4.6-Cu-Choke 10 MW input



#### Maximum magnetic field 628.5 kA/m (SLANS 627.5 kA/m)



Plot 3 : S Matrix Data





Resonance at 11.42053 GHz  $\beta = 1.03832$ 

(SLANS 11.424 GHz)

(SLANS 1.045)

Over-coupled loaded Q Unloaded Q=7,933 (SLANS 7,933.5)

5.1:Sportipl.c



### Wakefield damping "ready" structures





Electrical design: Roark Marsh, MIT

#### 1C-SW-A5.65-T4.6-Cu-Choke

#### 1C-SW-A5.65-T4.6-Cu-PBG

### 1C-SW-A5.65-T4.6-Cu-Choke-SLAC-#1 after bead-pull measurement





Surface electric fields

Surface magnetic fields

Electrical design: Z. Li, 8 November 2007

### 3-Cell structure with choke coupler and WR90 inputs 3C-SW-A5.65-T4.6-Cu-WR90



### 1C-SW-A3.75-T1.66-Cu

#### **10 MW input**



V.A. Dolgashev, 12 November 2007

# 1C-SW-A3.75-T2.6-Cu

#### 10 MW input



#### Maximum magnetic field 672 kA/m (SLANS 668.0 kA/m)

#### Maximum electric field 390 MV/m (SLANS 398.9 MV/m)



### 1C-SW-A2.75-T2.0-Cu 10 MW input



Maximum magnetic field 667.5 kA/m (SLANS 666.8 kA/m) Maximum electric field 457 MV/m (SLANS 456.3 MV/m)





Resonance at 11.42542 GHz  $\beta = 1.131$ 

(SLANS 11.42398 GHz)

(SLANS 1.164)



Over-coupled loaded Q Unloaded Q=8,919 (SLANS 8,9594)



 $\frac{11.425423 \text{Hz}}{2.73 \text{ MHz}} = 4.185 \times 10^{3}$ 

 $\frac{11.42542\text{GHz}}{2.73\text{ MHz}}(1+1.131) = 8.919 \times 10^3$ 

V.A. Dolgashev, 6 May 2008

### **High shunt impedance structures**





#### 1C-SW-A3.75-T2.6-Cu

#### 1C-SW-A3.75-T1.66-Cu

## Summary

We designed a set of single cell standing wave structures. We attempted to cover range parameters need for high-gradient, heavy wake-field loaded accelerator. These structures being built at KEK, SLAC and Frascati and high-power tested at SLAC. As we learn results of the high power tests, we design new structures.