

Comprehensive Analysis of High Gradient RF Test Results and New RF Constraint

May, 2008 Alexej Grudiev

Alexej Grudiev, New RF Constraint.

May. 2008

- Walter Wuensch
- Sergio Calatroni
- Chris Adolphsen
- Steffen Doebert
- ...

To provide rf designers with a local field quantity which limits high-power/high-gradient performance in the presence of rf breakdowns.

The high-gradient performance depends on:

- 1. Geometry of the cavity: rf design
- 2. Surface of the cavity : anything else than rf design
 - Material

CLI

- Heat treatment
- Machining
- Chemical treatment
- 3. Measurement technique and experimental setup

Variation of high-gradient performance of the same rf design.

N.B. Variation of up to tens of percents can be expected from the difference in the surface state, statistics and measurement setup.

Experimental data @ BDR=10⁻⁶, 100ns

1	e Ei e							_
			dphi	a1	d1	. 1	vg1	
	RF design name	f[GHZ]	[deg]	լՠՠյ	լՠՠֈ	e 1	[%]	[INIV/m]
1	DDS1	11.424	120	5.7	1	1	11.7	59.4
2	T53VG5R	11.424	120	4.45	1.66	1	5	80.9
3	T53VG3MC	11.424	120	3.9	1.66	1	3.3	102.2
4	H90VG3	11.424	150	5.3	4.2	1	3	77.7
5	H60VG3-FXB6	11.424	150	5.3	4.4	1	2.8	80.8
6	H60VG3S18	11.424	150	5.5	4.6	1.15	3.3	76.0
7	H60VG3S17-FXC5	11.424	150	5.3	3.7	1.34	3.6	83.3
8	H75VG4S18	11.424	150	5.3	3.04	1.36	4	101.0
9	H60VG4R17-2	11.424	150	5.68	3.65	1.37	4.5	82.6
10	HDX11-Cu	11.424	60	4.21	1.45	2.4	5.1	55.3
11	CLIC-X-band	11.424	120	3	2	1	1.1	120.4
12	SW20a565_1Cell	11.424	180	5.65	4.6	3.4	0	100.1
13	SW20a375	11.424	180	3.75	2.6	1.7	0	75.2
14	2pi/3	29.985	120	1.75	0.85	1	4.7	68.6
15	pi/2	29.985	90	2	0.85	1	7.4	48.7
16	HDS60L	29.985	60	1.9	0.55	2.5	8	45.5
17	HDS60S	29.985	60	1.6	0.55	2.4	5.1	55.8
18	HDS4Th	29.985	150	1.75	0.55	1	2.6	67.4
19	PETS9mm	29.985	120	4.5	0.85	1	39.8	16.4

Measurement data were scaled to 100 ns pulse length and to $BDR = 10^{-6}$.

Alexej Grudiev, New RF Constraint.

T

IC

Exponential fit requires different slope depending on the gradient

Power fit can be done with the same power for all gradients

N.B. This is very well known scaling law being confirmed again and again

- In a Cu structure, ultimate gradient E_a can be scaled to certain BDR and pulse length using above power law. It has been used in the following analysis of the data.
- The aim of this analysis is to find a field quantity X which is geometry independent and can be scaled among all Cu structures.

May. 2008

Power over circumference

Much better agreement but . This is not a local field quantity.

- H75vg4S18 does not really fit.
- Does not describe standing wave structures.

Breakdown initiation scenario

Qualitative picture

- Field emission currents J_{FN} heat a (potential) breakdown site up to a temperature rise ∆T on each pulse.
- After a number of pulses the site got modified so that J_{FN} increases so that ΔT increases above a certain threshold.
- Breakdown takes place.

<u>CLIC</u>

This scenario can explain:

- Dependence of the breakdown rate on the gradient (Fatigue)
- Pulse length dependence of the gradient (1D÷3D heat flow from a point-like source)

May. 2008

Field emission and rf power flow

$$\Delta T \sim P_{loss} \ll P_{FN} \leq P_{rf}$$

$$P_{loss} = \int_{V} J_{FN}^{2} \rho \, dv$$

$$P_{FN} = \oint_{S} E \times H_{FN} \, ds \sim E \cdot I_{FN}$$

$$P_{rf} = \oint_{S} E \times H \, ds$$

There are two regimes depending on the level of rf power flow

- 1. If the rf power flow dominates, the electric field remains unperturbed by the field emission currents and heating is limited by the rf power flow (We are in this regime)
- If power flow associated with field emission current P_{FN} dominates, the electric field is reduced due to "beam loading" thus limiting field emission and heating

Active power flow density

Real part of Poynting vector: P_{rf} ~ Re{S} = Re{E × H}

- 1. This is a local field quantity.
- 2. H75vg4S18 fits.
- Still does not describe standing wave structures.

$$E \times H = E_0 \cdot H_0^{TW} \sin^2 \omega t + E_0 \cdot H_0^{SW} \sin \omega t \cos \omega t$$
$$I_{FN} \cdot E = A E_0^3 \sin^3 \omega t \cdot \exp\left(\frac{-62 \, GV/m}{\beta E_0 \sin \omega t}\right)$$

Field emission and rf power coupling

What matters for the breakdown is the amount of rf power coupled to the field emission power flow.

$$P_{coup} = \int_{0}^{T/4} P_{rf} \cdot P_{FN} dt / \left(\int_{0}^{T/4} P_{FN} dt \cdot \int_{0}^{T/4} P_{rf} dt \right)$$
$$= C^{TW} E_0 H_0^{TW} + C^{SW} E_0 H_0^{SW}$$

Assuming that all breakdown sites have the same geometrical parameters the breakdown limit can be expressed in terms of modified Poynting vector S_c .

$$S_{c} = E_{0}H_{0}^{TW} + \frac{C^{SW}}{C^{TW}}E_{0}H_{0}^{SW} = \operatorname{Re}\{\mathbf{S}\} + g_{c} \cdot \operatorname{Im}\{\mathbf{S}\}$$

Field emission and rf power coupling

Constant g_c depends only on the value of the local surface electric field βE_0

CLIC

.....

g_c is in the range: from 0.15 to 0.2

S_{c6}=Re{S}+Im{S}/6 in CLIC_G

S_{c6} reaches 5.55 for nominal parameters.
Scaling it to 100ns gives:
5.55*(171.6/100)^1/3 = 6.64
To be compared with the measured data.

Analytical estimates for a cylindrical tip

<u>CLIC</u>

Williams & Williams, J. Appl. Rhys. D, 5 (1972) 280

$$C_{V} \frac{\partial T}{\partial t} = K \frac{\partial^{2} T}{\partial x^{2}} + J^{2} \rho$$

Let's get approximate solution it in two steps:

- 1. Solve it in steady-state (i.e. left hand side is zero) for a threshold current density required to reach melting temperature T_m
- 2. Solve time dependent equation in linear approximation to get the threshold time required to reach melting temperature

Step 1:

$$K \frac{\partial^2 T}{\partial x^2} + J^2 \rho_0 = 0; \quad T|_{x=h} = T_0; \quad T|_{x=0} = T_m; \quad \frac{\partial T}{\partial x}|_{x=0} = 0$$

$$T = T_m - \frac{J^2 \rho_0}{2K} x^2; \quad J_m^{\rho 0} = \sqrt{\frac{2K(T_m - T_0)}{h^2 \rho_0}}$$
Step 2:

Step 2:

$$C_{V} \frac{\partial T}{\partial t} = J^{2} \rho; \quad T|_{t=0} = T_{0}; \quad T|_{t=t_{m}} = T_{m}$$

$$T = T_{0} + \frac{J^{2} \rho_{0}}{C_{V}} t; \quad \tau_{m}^{\rho 0} = \frac{C_{V} (T_{m} - T_{0})}{J_{m}^{\rho 0} \rho_{0}} = \frac{C_{V}}{K} \frac{h^{2}}{2}$$

CLI

ÉRN

Analytical estimates for a cylindrical tip

Case B: Resistivity is temperature-dependent: $\rho = \rho_0 \cdot T/T_0$ (Bloch-Grüneisen)

Step 1:

$$K \frac{\partial^2 T}{\partial x^2} + J^2 \rho = 0; \quad T|_{x=h} = T_0; \quad T|_{x=0} = T_m; \quad \frac{\partial T}{\partial x}|_{x=0} = 0$$

$$T = T_m \cos \sqrt{\frac{J^2 \rho_0}{KT_0}} x; \quad J_m^{\rho 1} = \sqrt{\frac{KT_0}{h^2 \rho_0}} \arccos \frac{T_0}{T_m}$$

Step 2:

$$C_V \frac{\partial T}{\partial t} = J^2 \rho; \quad T|_{t=0} = T_0; \quad T|_{t=t_m} = T_m$$

 $T = T_0 \exp \frac{J^2 \rho_0}{C_V T_0} t; \quad \tau_m^{\rho 1} = \frac{C_V T_0}{J^2 \rho_0} \ln \frac{T_m}{T_0} = \frac{C_V}{K} h^2 \ln \frac{T_m}{T_0} / \arccos^2 \frac{T_0}{T_m}$

Alexej Grudiev, New RF Constraint.

CLI

-f

Analytical estimates for a cylindrical tip

Fundamental constants for copper				
Thermal conductivity: K [W/m·K]	400			
Volumetric heat capacity: C _V [MJ/m ³ ·K]	3.45			
Resistivity@300K: $\rho_0 [n\Omega \cdot m]$	17			
Melting temperature: T _m [K]	1358			

Some numbers for Case B: $\rho = \rho_0 \cdot T/T_0$

Conclusions on the new rf constraint

 All (?) available results of the high gradient rf tests has been collected and analyzed

• A model of the breakdown trigger has been developed based on the pulsed heating of the potential breakdown site by the field emission currents

• A new field quantity, modified Poynting vector: S_c , has been derived which takes into account both active and reactive power flow

• This new field quantity describes both travelling wave and standing wave accelerating structure experimental results rather well.

 \cdot The value of $S_{\rm c}$ achieved in the experiments agrees well with analytical estimate

CLI

Effective pulse length for breakdown

Recent experiment in T53vg3MC

At BDR=10⁻⁶ Effective pulse length: t_p^P = 130ns predicted Rect. Pulse of 100ns: E_a = 105 MV/m measured Ramped Pulse of 100+100ns: E_a = 105*(100/130)^{1/3} = 100.5 MV/m Recent experiment on T53vg3MC

Short Pulse Operation of T53VG3MC

1e-7 bkd rate (only 2 bkds so the error is fairly large)

CLIC

Conclusions on pulse shape

• A theoretical model based on the pulsed heating of field emission sites has been proposed to determine the threshold power level.

• It is found that

+ P_{th} varies from 89 to 83 % depending on the local electric field βE_0 , from 5 to 10 GV/m, respectively.

- P_{th} is weakly dependent on the pulse shape (in the range of reasonable pulse shapes which can be used for acceleration)
- It is also found that the time when power decreases from flat-top value down to threshold value does not contribute to the effective pulse length

• Modified model for effective pulse length definition is proposed. To take the flat-top time t_b plus the time when the power exceeds 85% of the flat-top level only during ramping up.

• The model predictions agree well with available experimental results on pulse shape dependence of the breakdown rate.

Prediction of average unloaded gradient at rect. pulse length of 100ns and BDR=1e-6 based on the results achieved in T53vg3MC: 102.3MV/m at 100ns and BDR=1e-6:

19.5Wu or Sc=6.2MW/mm²@100ns.

	18vg2.4	T18vg2.4	T28vg3	TD28vg3	CLIC_G				
$P/C^{*}(t_{p}^{P})^{1/3}=19.5Wu$	20		-						
Average unloaded gradient [MV/m]	13.		110	104	134				
$S_{c}=6.2MW/mm^{2}@t_{p}^{P}=100ns$									
Average unloaded gradient [MV/m]	109	106	105	103	120				