PAUL SCHERRER INSTITUT

ISOLDE seminar, 7.5.2014

The ERAWAST - initiative

How radioactive waste can be used for nuclear physics experiments

Dorothea Schumann, Rugard Dressler Laboratory for Radiochemistry and Environmental Chemistry Paul Scherrer Institute Villigen, Switzerland PAUL SCHERRER INSTITUT

- The ERAWAST project history
- Sources for isotopes at PSI
- Prominent examples
 - ⁶⁰Fe from copper
 - source and radiochemical separation
 - applications
 - ⁴⁴Ti, ²⁶Al and ⁵³Mn from STIP samples
 - source and radiochemical separation
 - first experiment with a ⁴⁴Ti beam at ISOLDE
 - ⁷Be from SINQ cooling water
 - source and radiochemical separation
- Proposal for the study of neutron capture cross sections of ⁵³Mn at n_TOF
- Potential proposal for the study of the ⁷Be(n,α)⁴He and ⁷Be(n,p)⁷Li cross sections at n_TOF and SARAF

PSI accelerator facilities and the ERAWAST-project

Exotic Radionuclides from Accelerator WAste for Science and Technology **Objective:**

Exploitation of accelerator waste for isolating rare exotic radionuclides

PSI cyclotron

590 MeV protons 2.4 mA beam current High activiation of shieldings, targets, structure material

History:

- Radiochemical analytics of activated components for disposal
- Results showed high content of several rare isotopes
- Looking for potential users of these isotopes:
 I. ERAWAST workshop 2006 (PSI), funded by ESF
- Five-years working program
 - II. ERAWAST workshop 2011 at PSI: first results and future program
 - ~ 20 Partners (nuclear physics, astrophysics, AMS)

"Useful" components of the PSI accelerator facilities

PAUL SCHERRER INSTITUT

4

Isotope production possibilities at PSI

Accelerator waste

Shielding, construction material, targets, beam dumps, cooling

intensely exposed by high-energetic protons and secondary particles dismounted, cooled

ready or foreseen for disposal

Waste components:

Copper beam dump irradiated at the 590-MeV proton beam station at PSI, dismounted about 15 years ago

²⁶AI, ⁵⁹Ni, ⁵³Mn, ⁶⁰Fe, ⁴⁴Ti Proton-irradiated carbon from target E

¹⁰Be, ⁷Be ¹⁴C, ³H

Material from the SINQ facility

Lead targets

²⁰⁷Bi, ¹⁸²Hf, rare earth elements (e.g. ¹⁴⁶Sm, several Dy isotopes) and lighter isotopes STIP program (material research program) Stainless steel for ⁴⁴Ti, ²⁶Al, ⁵³Mn production

SINQ cooling water

⁷Be, long-lived isotopes from irradiated structure material (²²Na, ⁸⁸Y and many others)

Special irradiations

The SINQ facility offers the possibility to irradiate materials with 590 MeV protons at special positions. Tended experiments for isotope production can be offered

V for ⁴⁴Ti production

Bi for ²⁰⁵Pb production

Irradiation with 71 MeV protons (injector 2) and up to 590 MeV neutrons (NAA, PNA) Chemical separations with other material

⁶⁰Fe Astrophysical background **Radiochemical separation** Determination of the half life Determination of the neutron capture cross section at stellar energies

 represents an important chronometer for periods of several Million years (t_{1/2} ~1.5 10⁶ yr)

> formation of the solar system, nearby supernovae / AGBs γ-ray astronomy

- is produced in massive stars prior to the final supernova explosion (alternatively by AGB stars?)
- is in any case made by the s process via neutron capture reactions

Scientific aspects:

- Measured and calculated ratios of ⁶⁰Fe/²⁶Al are not in agreement
- Only one half-life measurement (Kutschera 1986; uncertainty 20%)
- Neutron capture cross sections unknown
- Nearly no alternative production route

Necessary for evaluation

Cross sections for production ${}^{58}Fe(n,\gamma){}^{59}Fe$ ${}^{59}Fe(n,\gamma){}^{60}Fe$ ${}^{60}Fe(n,\gamma){}^{61}Fe$

Half-lives for decay ⁵⁹Fe ⁶⁰Co ⁶¹Co ⁶¹Fe ⁶⁰Fe

⁶⁰Fe sample material urgently needed!

s-process: neutron capture and following $\beta^{\text{-}}\text{-decay}$

Separation and preparation of ⁶⁰Fe

Source: copper beam dump Dissolution of Cu chips (3 g) in 7 M HNO₃ (50MBq ⁶⁰Co)

Evaporation to dryness

Dissolution in 7 M HCl + 5 mg Co²⁺ as carrier Extraction with methylisobutylketone

Aqueous phase:

Ni, Co, Cu,

organic phase: Fe

Back extraction with 0.1 M HCl, repetition of

procedure

Result: $7.8 \cdot 10^{15}$ or 777 ng ⁶⁰Fe atoms, decontamination factor (Co) > 10^{8} (0.3 Bq)

Evaporation of the final solution onto a graphite backing for the target Solution for half life measurement

PAUL SCHERRER INSTITUT

Re-determination of the half-life of ⁶⁰Fe

$$T_{1/2}{}_{60}{}_{Fe} = \frac{N_{60}{}_{Fe}}{A_{60}{}_{Fe}} \ln 2 \qquad \text{A: ingrowth of } {}^{60}\text{Co; N: I}$$

⁶⁰Fe (1.5·10⁶ y) $\stackrel{\beta}{\rightarrow}$ ^{60m}Co (10.5 min) $\stackrel{\gamma}{\rightarrow}$ ⁶⁰Co (5.3 y) $\stackrel{\gamma}{\rightarrow}$ $\stackrel{\beta}{\rightarrow}$ ⁶⁰Ni (stable) ⁶⁰Fe: no γ radiation, low β-energy

 \rightarrow very good chemical separation from Co necessary

- ICP-MS can measure isotope ratios for the iron isotopes
- ICP-MS in principle possible, but interference with ⁶⁰Ni
- Correction with other Ni-isotopes not possible, because no natural isotope ratios (production of stable isotopes via spallation in the beam dump)

 \rightarrow addition of stable Fe carrier necessary

 \rightarrow addition of stable Ni carrier necessary

 $T_{1/2} = 2.62 \pm 0.04 \cdot 10^6$ years (1s)

Rugel et.al. PRL 2009

 $A_{(t=0)}^{60}Co = 0.207 \pm 0.006$ Bq (starting with ~ 50 MBq in the Cu-chips) $A^{60}Fe = 49.19 \pm 0.11$ Bq m(Fe_{stable}) = 2.6662 \pm 0.0009 mg (M=55.9020 \pm 0.0033 g/mol because of nonnatural abundance) I(N_{60Fe}/N_{Fe}) = 2.0483 \pm 0.0035 \cdot 10^{-4}

CP-MS

KARLSRUHER NUKLIDKARTE

8. Auflage 2012

Ga

CHART OF THE NUCLIDES, 8th Edition 2012 / CARTE DES NUCLEIDES, 8the Edition 2012 CARTA DE NUCLEIDOS, 8ª Edición 2012 / ТАБЛИЦА НУКЛИДОВ, 8-е Издание 2012

核素图, 2012年第8版

J. Magill¹, G. Pfennig², R. Dreher¹, Z. Sóti²

Nucleonica GmbH, c/o European Commission, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, eMail: joseph.magill@nucleonica.com, http://www.nucleonica.com ²European Commission - Joint Research Centre - Institute for Transuranium Elements P.O. Box 2340, 76125 Karlsruhe, Germany

© Nucleonica GmbH 2012, developed under a License of the European Atomic Energy Community

Legal Notice

Neither the Nucleonica GmbH nor any person acting on behalf of the Company is responsible for the use which might be made of the following information. No part of this publication may be reproduced or distributed in any form without prior written consent of Nucleonica GmbH. ISBN 978-3-00-038392-2, © Nucleonica GmbH, 2012

G. Rugel, et al.: Phys. Rev. Lett. 103 (2009) 072502

Ga 60 Ga 61 Ga 62 Ga 63 Ga 64 Ga 65 Ga 66 Ga 67

			31	69.723 σ 2.9		70 ms p* 8.3, 12.2 y 1004, 3848 pp pu?	168 ms p* 8.2 y 88, 418, 124 756	116.121 ms ()* 8.2 y (954 -)	31,4 s p* -4.5 - 637, 627, 193 650	2.62 m 1* 2.9.6.1 1.992.808 3366, 1387 2195	15 m β ⁺ 2.1, 2.2. γ 115, 61, 153 752	9,304 h p* 4.2. 7,1039,2752 834,2190 4296	78.278 h = no 8* y 93, 185, 300
Zn 65.38	Zn 54 3.2 ms	Zn 55 19.8 ms	Zn 56 30.0 ms	Zn 57 47 ms	Zn 58 84 ms	Zn 59 182 ms	Zn 60 2.4 m	Zn 61 1.5 m	Zn 62 9.13 h	Zn 63 38.1 m	Zn 64 49.17	Zn 65 244.3 d	Zn 66 27.73
σ 1.1	20 074 = 0.74 00 11 19	р* 20-4.604	0* 10 2 877. 2.082 1.147	ft* /p 1.87.4.52 2.50 + 2701*	0* 7 203. 648 0p7	()* 8.1 1491,914 ()p.1.76,2.09 1.82,1.38	0*25.3.1. y 670, 61, 273 334	()* 4.4 7 475, 1660 970	6 ⁺ 0.7 - 41, 597, 548 508	()* 2.3 9 670, 962 1412	e 0.74 σ _{nst} 1.1E-5 σ _{n.e} < 1.2E-5	ε. 9 ⁺ 0.3 γ 1115 α 66. α ₆₆ 2.0	σ 0.9 σ _{nu} < 2E-5
Cu 63.546	Cu 53 <300 ns	Cu 54 <75 ns	Cu 55 27 ms	Cu 56 93 ms	Cu 57 199 ms	Cu 58 3.20 s	Cu 59 82 s	Cu 60 23 m	Cu 61 3.4 h	Cu 62 9.74 m	Cu 63 69.15	Cu 64 12.7004 h	Cu 65 30.85
σ 3.8	P7 3*3	p?	8* 00 07	р ^т 1 2701, 1225 2507, 2780, Вр	0*77. 71112	β [*] 7.5 7 1454, 1448 40	0 ⁺ 3.8. 7 1302, 878 339, 465	β ⁺ 2 0, 3 9 γ 1332, 1792 026	1186. 1186.	n* 2.9 ↑(1123)	o 4.5	6-06.0*0.7 7(1346) 6-270	σ2,17
Ni 51 23.8 ms	NI 52 40.8 ms	Ni 53 55.2 ms	Ni 54 104 ms	Ni 55 209 ms	Ni 56 6.075 d	Ni 57 36 h	Ni 58 68.077	Ni 59 7.5-10' a	Ni 60 26.223	Ni 61 1.1399	Ni 62 3.6346	Ni 63 100 a	Ni 64 0.9255
0 10 4 571 2 466 2 856. 765* 1067*	p ¹ Bo 1.323 1.037 - 2410, 142	00 1 893, 2.354 2.072. 7 649*	#* 7837 0	()* 7.7 (2919,2976 3303)	no β* 1156, 812, 750 480, 270	6* 0.8. (1378,1920 127	α 4.6 α ₆₆ ≤ 3E-5	ε, β [•] , no γ σ 77 7, σ _{no} 14 σ ₁₈ 2, σ _{sta} 92	a 2.9	с 2.5 _{Пад} 3Е-5	α 15	87 0.07 00 1 0 20	α1.6
Co 50 38.8 ms	Co 51 68.8 ms	Co 52	CO 53	Co 54	Co 55 17.54 h	Co 56 77.236 d	Co 57 271.80 d	Co 58	Co 59 100	Co 60	Co 61 1.65 h	Co 62	Co 63 27.5 s
10, 102 715 2.003 9.261* 707* 765, 482*		1940 1940 1940 1940	staa staa staa staa staa	(* 43) (* 41) (1236) (* 23) (427) (12361)	0* 1,5 - 931, 477 1409	r, 17 1.5 y 847, 1238 2598, 1771 1038	# 7 122, 136, 14	(y. (25) p* 8.5 (3.3) a' = 511 e 140000 = 1900	त्त 20.7 + 16.5	1-36, 6" 12, 5", 11502 1173 1173 1173 1173 1173	8 ⁻ 1.2	F 2.8. F 4.1. 1173 1179 1963 2260 2065 1129	р ⁻ 3.6 7 87. 982
Fe 49 64.7 ms	Fe 50 150 ms	Fe 51 305 ms	Fe 52	Fe 53	Fe 54 5.845	Fe 55 2.73 a	Fe 56 91.754	Fe 57 2.119	Fe 58 0.282	Fe 59 44.494 d	Fe 60 2.62-10" a	Fe 61 6.0 m	Fe 62 68 s
0 ⁷ 1 ¹ 0 1.937 7 752' 262, 797 462	est B	5 ⁺ 7.0 7237	1 [°] 4.4 (32) 410 425 2018 - 140 1	6/701 1526 A ⁴ 2 8 1011 - 270 2346 11620 1	e 2.3 e _{nus} 1E-5	с по т л 13 л _{пи} 0.01	a 2.8	a 14		β ⁺⁺ 0.5, 1.6 7 1099, 1292 σ < 10	j≓0.2. m	0 2.6, 2.6. 7 1205, 1027 298	й ^н 2.5 у 506 0
Mn 48 158 ms	Mn 49 382 ms	Mn 50	Mn 51 46.2 m	Min 52 21m 584	Mn 53 3.7·10 ^a a	Mn 54 312.2 d	Mn 55 100	Mn 56 2.58 h	Mn 57 1.5 m	Mn 58	Mn 59 4.6 s	Mn 60	Mn 61 0.71 s
1752, 1108 3676 Ilp	1* 6.7 (272.2505	(*13.5 17. (*1999) (*1975) (*1975) (*10) (*10) (*10)	p* 2.2 ± (749)	1101 1101 1371 101 111 1111	ε no.γ α 70	F 7835 8 ≤ 10	a 13.3	p= 2.8. 7 847, 1811 2113	#~ 2.8 7 14, 122, 092	111 5" 0.1. 1811 5" 0.1. 1823 - 1447 172.8" 2433	0~44,4.8 y 728,473 571		р ⁻ 6.4. у 629, 207
Cr 47 472 ms	Cr 48 21.6 h	Cr 49 42 m	Cr 50 4.345	Cr 51 27.7010 d	Cr 52 83.789	Cr 53 9.501	Cr 54 2.365	Cr 55 3.50 m	Cr 56 5.94 m	Cr 57 21.1 s	Cr 58 7.0 s	Gr 59 1.05 s	Cr 60 0.49 s
11* 6.4 y 87	308, 112	0 ⁺ 1.4, 1.5 y 91, 153, 62	o 15	4 7 320 9 < 10	a 0.8	a 18	a 0.36	р ^т 2.6 т (1526)	β ⁻ 1.5 783, 26	β ⁺ 5.1 y 83, 850, 1752 1535	0 [°] 7 683, 126, 290 520 m	β ⁺ 7.1238, 1900 112, 661	6-6.7 y 349, 410, 750 g

First determination of the neutron capture cross section

- Measurement of the increase of the Co-daughter (determination of the number of ⁶⁰Fe atoms)
 ⁶⁰Fe (2.62 · 10⁶ y) ^{β⁻}/_→ ^{60m}Co (10.5 min) ^γ/_→ ⁶⁰Co (5.3 y) ^γ/_→ ^{β⁻}/₆₀Ni (stable)
 ⁶⁰Fe: no γ radiation, low β-energy
- Measurement of the ^{61}Fe production (1027/1205 keV) \rightarrow KIT Karlsruhe

PAUL SCHERRER INSTITU

44**T**i

Astrophysical background **Radiochemical separation** Study of the ⁴⁴Ti(α ,p)⁴⁷V reaction and implications for Core Collapse Supernovae

⁴⁴Ti production conditions in super nova explosion

total proton to nucleon ratio Y_e =0.48

PAUL SCHERRER INSTITUT

ORDER OF IMPORTANCE OF							
REACTIONS PRODUCING							
${}^{44}\text{Ti}$ at $n = 0^{\text{a}}$							
<u>ππη</u> = 0							
Reaction	Slope						
$^{44}\text{Ti}(\alpha, p)^{47}\text{V}\dots$	-0.394						
$\alpha(2\alpha, \gamma)^{12}$ C	+0.386						
$^{45}V(p, \gamma)^{46}Cr$	-0.361						
${}^{40}Ca(\alpha, \gamma){}^{44}Ti$	+0.137						
57 Co(<i>p</i> , <i>n</i>) 57 Ni	+0.102						
36 Ar(α, p) 39 K	+0.037						
$^{44}\text{Ti}(\alpha, \gamma)^{48}\text{Cr}$	-0.024						
${}^{12}C(\alpha, \gamma){}^{16}O$	-0.017						
57 Ni (p, γ) 58 Cu	+0.013						
58 Cu(<i>p</i> , γ) 59 Zn	+0.011						
${}^{36}Ar(\alpha, \gamma){}^{40}Ca$	+0.008						
$^{44}\text{Ti}(p, \gamma)^{45}\text{V}\dots$	-0.005						
57 Co(p, γ) 58 Ni	+0.002						
57 Ni(<i>n</i> , γ) 58 Cu	+0.002						
54 Fe(α , <i>n</i>) 57 Ni	+0.002						
${}^{40}Ca(\alpha, p){}^{43}Sc$	-0.002						

^a Order of importance of reactions producing ⁴⁴Ti at $\eta = 0$ according to the slope of $X(^{44}\text{Ti})$ near the standard reaction rates.

R. Diehl, F.X. Timmes: Publ. Astrosoc. Pacific 110 (1998) 637

SINQ Target Irradiation Program - STIP

 Different types of miniature specimens for assessing different mechanical properties such as tensile, fatigue, fracture properties and microstructural analyses

- Specimens were prepared by different participating laboratories based on their own request and then collected at PSI

Low-activation martensitic steels; the German version, Optifer, and the Swiss version, Optimax; mass%

Steel	Fe	Cr	Ni	Мо	Mn	Ti	V	W
Optifer	bal.	9.48	0.06	0.002	0.55		0.245	0.985
Optimax A	bal.	9.3	< 0.01	0.09	0.60	< 0.01	0.24	0.97
Optimax C	bal.	9.5	< 0.01	0.15	0.40	< 0.01	0.25	1.9

 u^{b}

UNIVERSITÄT BERN Samples for the separation

38 steel samples weighting from 1 to 2 g ⁵⁴Mn as a radioactive marker for the unknown amount of ⁵³Mn

Steel samples and their amounts in MBq for the separation

Steel	Nr. of samples	⁴⁴ Ti, MBq	⁵⁴ Mn, MBq	⁶⁰ Co, MBq
Optifer	9	95	23	17
Optimax A	9	47	13	10
Optimax C	8	74	19	29
Not identified	12	65	17	14
Total	38	≈ 300	≈ 70	≈ 70

Sample material:

60 g stainless steel from SINQ Target Irradiation Program - STIP

Stainless steel dissolved in 8M HCI+conc.HNO₃

Separation of ⁴⁴Ti and ⁵³Mn

PAUL SCHERRER INSTITUT

⁴⁴Ti(α ,p)⁴⁷V at CERN ISOLDE Dec.2012

Final sample

ISOLDE oven

⁴⁴Ti delivered: 50 MBq = 5×10^{18} atoms ion source: modified Mk 5 Febiad TiF₃ extracted and post accelerated 10^5 pps ⁴⁴Ti with out any stable Ti

Margerin et.al. PLB 2014

Astrophysical background Radiochemical separation Planned experiments

⁵³Mn production conditions in super nova explosion

G. Magkotsios, et al.: Astrophys. J. 741 (2011) 78

PAUL SCHERRER INSTITUT

PAUL SCHERRER INSTITUT

⁵³Mn half life

Author (Year)	Method	t _{1/2} [Ma]
Nilkinson, et al. (1955)	Compared nuclear reaction yield with ⁵⁴ Mn	140·10 ⁻⁶
Sheline, et al. (1957)	Calculated nuclear reaction yield	~2
Kaye, et al. (1965)	Spallation yield of meteorites	1.9 ± 0.5
Hohlfelder (1969)	Mass spectrometry (MS) of meteoric samples	10.8 ± 4.5
Matsuda, et al. (1971)	MS of 730 MeV proton activation products	2.9 ± 1.2
Honda, et al. (1971)	MS of artificial and meteoritic samples	3.7 ± 0.37
Nölfle, et al. (1972)	Neutron activation of meteoritic samples	3.9 ± 0.6
Heimann, et al. (1974)	Decay of meteoritic ⁵³ Mn	3.85 ± 0.4

Limited amount of sample material: 2.5×10^{11} to 1.3×10^{13} atoms of ⁵³Mn extracted from meteorites — relatively high uncertainty

Improvements:

Sample material: more than 10⁴ more atoms! Improved uncertainty! High-sophisticated measurement technique (LSC; ICP-MS) **Dating Problem** ⁵³Mn/⁵⁵Mn vs. ²⁰⁷Pb/²⁰⁶Pb

L.E. Nyquist, et al.: Geochim. Cosmochim. Acta 73 (2009) 5115

Neutron capture cross-section ⁵³Mn

JEFF-3.1/A = R. A. Forrest, J. Kopecky, J.-Ch. Sublet (2003) UKAEA FUS 486 EAF-2010 = J.-Ch. Sublet, et al. (2010) CCFE-R (10) 05 TENDL-2012 = A.J. Koning, D. Rochman (2012) Nucl. Data Sheets 113, 2841

Changes in TALYS predictions

S.F.Mughaghab: Atlas of Neutron Resonances Resonance Parameters and Thermal Cross Sections Z=1-100 (2006)

Chemical separation and purification of ⁵³Mn

Precipitation of Cr with Urotropin (pH 5.5): Mn stays in solution precipitation of $Cr(OH)_3$

content of STIP-samples

 $1.8{\times}10^{21}$ atoms V $3.3{\times}10^{21}$ atoms ^{55}Mn

chemical yield:

suppression of other elements

stock solution:

1.8×10¹⁹ atoms V 2.3×10²¹ atoms ⁵⁵Mn

3×10¹⁹ atoms ⁵³Mn

 $6.6{\times}10^{22}$ atoms Cr 5.7 ${\times}10^{23}$ atoms Fe

70% 10⁻⁴

2×10¹⁹ atoms ⁵³**Mn** 6.6×10¹⁸ atoms Cr

 5.6×10^{10} atoms Cr 5.7×10^{19} atoms Fe

Contribution of other elements

Expectations of signal contributions

Contribution of ⁵⁵Mn and backing material

ISOLDE mass separator

FEBIAD output: (single charged Mn)

suppression Δ mass = 1 : suppression Δ mass > 1 :

ionisation yield ISOLDE: separation time:

> 10⁴
2.5% Mn
5 hours per 10¹⁷ atoms ⁵³Mn

 6.2×10^{14} part. per sec

final sample:

 5×10^{17} atoms 53 Mn 8.7×10⁴ atoms V 5.8×10¹⁵ atoms 55 Mn

100 µA

> 10³

 2.4×10^{12} atoms Cr 4.9×10^{9} atoms Fe

total separation time:

25 hours

First joint experiment ISOLDE - n_TOF

⁷Be

Astrophysical background **Radiochemical separation Planned experiments**

⁷Be(n,x)y Reactions and the problem of primordial ⁷Li

Connecticut University, PSI, CERN, SOREQ

18 mm wide _____ 1.5 mm thick

Clean and Thin ⁷Be Target ~10¹⁷ ⁷Be/cm²(~5 GBq 0.4x0.4 cm²) ~200 GBq ⁷Be Implantation at CERN-ISOLDE

⁷Be separation from SINQ cooling water

Radiochemical separation

- . Elution from the LEWATIT ion exchanger with 2M HCI
- 2. Purification of the ⁷Be fraction (²²Na, ⁸⁸Y, ⁵⁴Mn, ¹⁰B, ⁷Li)

Procedure:

- Evaporation of the HCl solution
- Dissolution in 0.1M HNO₃
- Loading onto the column, washing with 0.1M HNO₃ – elution of ¹⁰B (BO₃⁻)
- Elution of ²²Na and ⁷Li with 0.1M HNO₃
- Elution of ⁷Be
- Elution of ⁸⁸Y, ⁵⁴Mn and others

Separation Scheme for the ⁷Be separation

PAUL SCHERRER INSTITUT Planned experiments with ⁷Be at n_TOF EAR2

Proposal for the ISOLDE and Neutron Time-of-Flight Committee

Measurement of ${}^{7}Be(n,\alpha){}^{4}He$ and ${}^{7}Be(n,p){}^{7}Li$ cross sections

Figure: Comparison of the evaluated cross section of the $^7\text{Be}(n,\alpha)^4\text{He}$ reaction in various libraries, from thermal neutron energy to 1 MeV

⁷Be(n,α)⁴He:

Very low cross sections, high amounts of ⁷Be necessary (~ 1-10 µg, 10¹⁷-10¹⁸ atoms, 10-100 GBq)) Impurities of ^{9/10}Be have only slight influence Background suppression possible

⁷Be(n,p)⁷Li:

Higher cross sections, less amounts needed (~ $0.1 \mu g - 10^{16}$ atoms, 1 GBq) Impurities of ^{9/10}Be have more influence Background suppression more difficult due to lower energy of the proton Mass separation necessary!

Second joint experiment ISOLDE - n_TOF

Previous ⁷Be target preparation at ISOLDE

⁷Be(p, γ)⁸B: importance for the physics of the Sun and the evaluation of the solar neutrino flux

First target:

PAUL SCHERRER INSTITUT

VOLUME 90, NUMBER 2

PHYSICAL REVIEW LETTERS

week ending 17 JANUARY 2003

Online production Pre1GeV protons on graphite extraction of 1.8·10¹⁰/s ⁷Be atoms at 60 keV implanted in Cu (5·10¹⁵ ⁷Be atoms)

Second target:

Irradiated graphite from target M (PSI) 1.17.10¹⁶ ⁷Be atoms

L. T. Baby,¹C. Bordeanu,^{1,*}G. Goldring,¹M. Hass,¹L. Weissman,²V. N. Fedoseyev,³U. Köster,³Y. Nir-El,⁴G. Haquin,⁴ H. W. Gäggeler,⁵ R. Weinreich,⁵ and ISOLDE Collaboration

¹Department of Particle Physics, Weizmann Institute of Science, Rehovot, Israel ²NSCL, Michigan State University, East Lansing, Michigan 48824 ³ISOLDE, CERN, Geneva, Switzerland ⁴Soreq Research Centre, Yavne, Israel ⁵Paul Scherrer Institute, Villigen, Switzerland (Received 7 August 2002; published 15 January 2003)

16 September 1999

PHYSICS LETTERS B

Physics Letters B 462 (1999) 237-242

A new measurement of the ${}^{7}Be(p,\gamma) {}^{8}B$ cross-section with an implanted ${}^{7}Be$ target

M. Hass a,1 , C. Broude a , V. Fedoseev b , G. Goldring a , G. Huber c , J. Lettry d , V. Mishin b , H.J. Ravn d , V. Sebastian c , L. Weissman e , ISOLDE Collaboration d

^a The Weizmann Institute of Science, Rehovot, Israel
 ^b Institute of Spectroscopy, Troitzk, Russia
 ^c Johannes Gutenberg University, Institute of Physics, Mainz, Germany
 ^c ISOLDE, CERN, CH-1211 Geneva, Switzerland
 ^e Instituut voor Kern-en Stralingsfysica, KU Leuven, Leuven, Belgium

Received 9 June 1999; received in revised form 21 July 1999; accepted 22 July 1999 Editor: J.P. Schiffer **Summary and outlook**

ERAWAST provides rare exotic isotopes in sufficient amounts for several nuclear physics experiments

- ⁶⁰Fe half life and neutron capture cross section
- $-{}^{44}\text{Ti}$ ${}^{44}\text{Ti}(\alpha,p){}^{47}\text{V}$ reaction
- ¹⁰Be from graphite targets; for p-induced reactions (Denmark), neutron capture (FRANZ)
- ⁶³Ni separation of the decay product ⁶³Cu; target for n_TOF
- ²⁰⁷Bi calibration source for PTB
- $\, \text{and many others}$

Two proposals for joint experiments: ISOLDE – n_TOF

- Neutron capture cross section of $^{53}\mbox{Mn}$ at n_TOF
- Measurement of ${}^{7}Be(n,\alpha){}^{4}He$ and ${}^{7}Be(n,p){}^{7}Li$ cross sections