

Methods in ALFA ALignment

Jordan Melendez

Taylor University

17.7.14

Outline

- 2 Alignment Methods
 - Initial Studies
 - Hot Spot
 - Kinematic Peak
 - What is Left?

3 Concerns

What is ALFA?

- ALFA is a set of detectors 240m from ATLAS.
- Measures the absolute luminosity and total cross section
- Studies elastic and diffractive protons.

My Role

- The ALFA detectors are mobile.
- Their alignment can vary from run to run.
- I must attempt to determine their alignment, using collected data, to within $\mu {\rm m}.$
- Both positive and negative results are informative.

Rotation

- My initial attempt to align Monte Carlo data
- Able to align, but only to tenths of radians

Hot Spot: Theory

- The scatterplot of ALFA diffractive hits has a particular distribution
- The center tends to have more events and thus, better determined errors.
- The error of the error should be minimized at the dense region

Hot Spot

Hot Spot: Results

Kinematic Peak: Theory

- Create distributions of kinematic variables: θ , ϕ , t, etc.
- Compare to the ideallized distributions if the detectors were positioned perfectly
- Determine the shift needed to recreate ideal distributions

Kinematic Peak

Kinematic Peak: Results

What is Left?

Current/Future Work

• Rewrite all of my code..

- Computer problems!
- Might have to take my computer to IT $\ \odot$

Pictures

