

Methods in ALFA Alignment

Jordan Melendez

Taylor University

August 7, 2014

Jordan Melendez (Taylor University)

ALFA Detectors

- Most particles are captured by the main ATLAS detector
- The main detectors must have holes for the particles to enter
- Some protons scatter at very small angles and continue out of the holes, being missed by the main detector
- Forward detectors help fix this

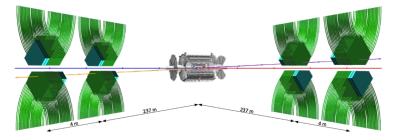


Figure 1 : Protons scattered and detected by ALFA (Not to scale) [4]

ALFA Detectors

- Measures the absolute luminosity and total cross section
- Studies elastic and diffractive protons.
- Precision is important
- This precision propagates to the precision of other measurements

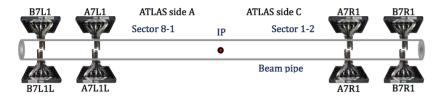


Figure 2 : The position of ALFA with respect to the interaction point (IP) [4]

Physical Motivation

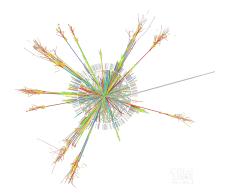


Figure 3 : A simulated *pp* scattering [1]

- Unanswered questions about protons
- ALFA can access physics that is model dependent
- We could learn more about how protons interact with one another

The Detector

- Detector sits in Roman Pot
- Main detector (MD)
 - 20 layers of scintillating fibers
 - u-v pattern gives x, y coordinates
- Overlap detector (OD)
 - Provides relative alignment between MDs

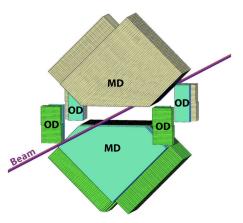


Figure 4 : The main and overlap detectors of ALFA [5]

My Role

- Prepare a skeleton of a future software package
- Determine ALFA alignment to within μ m.
- Using single diffractive protons to determine alignment
 - "Hot spot" Method
 - "Kinematic peak" Method

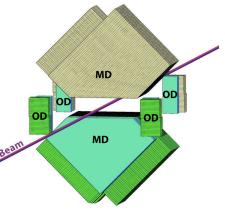
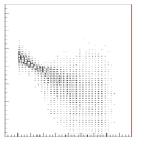
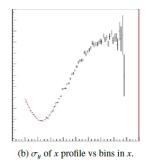
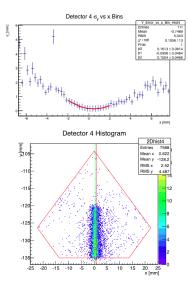



Figure 5 : [5]


Hot Spot: Theory

- The proton tracks have a particular distribution
- "Hot spot" is condensed \rightarrow smaller σ_y .
- The standard deviation minimized at the dense region



(a) The hitmap of SD events on the AFP detector.

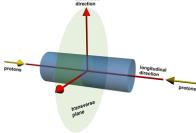
Hot Spot

Hot Spot: Results

• True x shift: 100 μ m

Det. #	Shift (μ m)	% Err
5	100.9	0.89%
6	123.2	23%
7	106.2	6.2%
8	96.6	3.4%

Kinematic Peak: Theory


• Reconstruct the *t* distribution $d\sigma/dt$, where

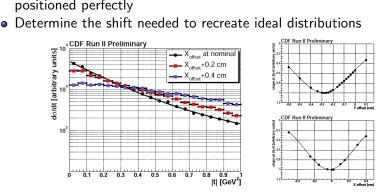
$$t=(p_i-p_f)^2$$

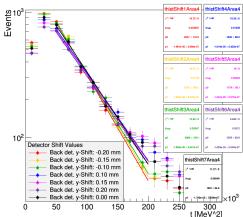
• An important distribution to measure, in general.

transverse

Kinematic Peak: Theory

- Create reconstructed t distribution.
- Compare to the ideallized distributions if the detectors were positioned perfectly
- Determine the shift needed to recreate ideal distributions



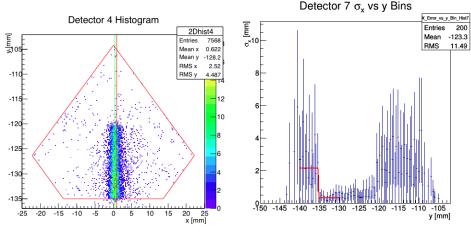

Figure 7 : Left: The t-distribution for various shifts X_{offset} . Right: |b| slope vs Y (top) and X (bottom) [3]

Kinematic Peak

Kinematic Peak: Results

Side C: Lower t Histogram

Figure 8 : *t*-distribution for various shifts in *y*-direction


Jordan Melendez (Taylor University)

Methods in ALFA Alignment

August 7, 2014 11 / 17

Percent Error: 0.193397%

Future Work

- Test precision of kinematic peak and detector edge method
- Test code on LHC data
- Adapt code to work on both ALFA and AFP detectors

Conclusions

What I Learned

Programming

- C++
- ROOT
- Detector physics, particularly ALFA
- Proton reconstruction methods
- I ectures!
 - The Standard Model
 - String Theory
 - Future colliders
 - Neutrino physics
 - etc.

Conclusions

Thanks!

The End Thanks for listening!

Jordan Melendez (Taylor University)

References I

[1] http:

//atlas.ch/atlas_photos/fulldetector/events_jpg.html.

- [2] http://hypatia.iasa.gr/en/help.html.
- [3] Michele Gallinaro.
- [4] Sune Jakobsen. *Commissioning of the Absolute Luminosity For ATLAS detector at the LHC*. PhD thesis, University of Copenhagen, 2013.
- [5] H Stenzel. Measurement of the total cross section from elastic scattering in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector. Jun 2014.