RUN II UPGRADE OF THE MINIMUM BIAS TRIGGER SCINTILLATORS
SUMMER 2014 PROGRESS

Rachel Hyneman, College of William & Mary
Advisor: Antonio Sidoti, INFN Bologna
Major Completed Tasks

- Determine minimum time separation between two pulses for Constant Fraction Discriminators to fire twice
 - Already covered these results in previous talk
 - Check against another CFD module to confirm similar performance
 – results were good
- Determine “f-value” of CFD’s
 - Check against another CFD module
 - Check effects of changing CFD delay parameter
- Estimate MBTS counter efficiency using Run 1 data and measured deadtime
 - Rough estimation to determine usefulness of the MBTS for Run II Heavy Ion runs
F-Value

• “f-value” is determined by measuring the amplitude of the input pulse at the time of the zero-crossing, then dividing by the maximum amplitude to obtain a fractional value

• 32 ns Delay found to be best in earlier pulse-separation testing
 • Also seems most predictable for f-value
 • Output pulse will fall at ~peak of the input pulse

• As expected, with smaller delay, zero-crossing falls earlier along the pulse, hence smaller fractional amplitude
Estimate of Efficiency for Heavy Ion Runs

- Minimum Bias Trigger important for Heavy Ion analysis
 - More low pT particles created than in p-p collisions
- For Run II, bunch crossing rate increasing from 200ns to 100ns for Heavy Ion runs
- Looked at data from Run 1 HI Runs to estimate event frequency, then (roughly) calculated efficiency
 - Estimated a “miss rate” as 1 – efficiency
- Found no miss rates > 1%
- Good to go for HI Runs!
What next?

• Installation of scintillators themselves and updates to side A inner drawers (different PMT and 3-in-1 card output)
• One CFD doesn’t work
• Two drawers have issues
• Better analysis of HI efficiency should probably be done
• Need to plug in more wires! (Ran out….)
My Experience

- No one set project – did what needed to be done for different people at the time
- Worked almost completely on electronics
 - Gained more hardware experience than I was expecting
- Worked in the detector pits!
 - Very unique-to-CERN experience
- First time working in a very large collaboration
Favorites from the Summer...
Acknowledgements

• Thanks to Antonio for supervising, to Sabrina for software help, to Oleg for electronics help, to Ivana for help obtaining Run 1 trigger rates, to Thilo and Kristof for helping test CTP connections, and to Luis for keeping me up-to-date on detector tests.

• Thanks to everyone at U-Michigan for hosting such a great summer program!
(Extra Slides)
An Overview of CFD Operation

- Can view Sum through “Monitor” output on CFD
- Delay is set by a cable; adjustable parameter
- Output is a square-wave pulse w/ leading edge at the zero-crossing
CFD Pulse Separation

- Used charge injection pulses from MBTS electronics (more realistic results)
- Minimum time depends on ratio of amplitudes, not absolute amplitudes
- Added results from testing another CFD module
 - Similar response between both
- ~130 ns appears to be worst-case-scenario