Search for Resonant s-channel Higgs Production at FCC-ee

George Wojcik Supervisor: Dr. David d'Enterria

FCC- Future Circular Colliders

- What's next for accelerators?
- Future colliders One potential machine is the FCCee, a high-precision, highluminosity e+e- machine
- Able to probe rare events with high precision due to extreme luminosities

Resonant Higgs Production

 Higgs coupling is proportional to the square of the electron's mass, so it's tiny!!!

BR(H \rightarrow e⁺e⁻)~5.3·10⁻⁹, m_H=125 GeV, Γ _H=4.2 MeV

$$\sigma(e^{+}e^{-} \rightarrow H) = \frac{4\pi\Gamma_{H}^{2}Br(H \rightarrow e^{+}e^{-})}{(\hat{s} - M_{H}^{2})^{2} + \Gamma_{H}^{2}M_{H}^{2}} \sim 1.64 \text{ fb}$$

- Compare to muon Higgs coupling (~70 pb)
- At any other machine, this cross-section would be unobservable... But we're working with L_{int} as high as 10 ab-1!
- Measure Electron Yukawa coupling!

How do we see this process?

Decays of a 125 GeV Standard-Model Higgs boson

- My job simulating different decay pathways to determine event yields, significance
- Using PYTHIA8 and ROOT, I simulate events for signal and background, and find cuts and analysis that maximize significance of the Higgs signal

- What channels are visible?
- So far, 7 channels are considered:
 - WW*(2j,lv) (σ = 166 ab), continuum background σ ~O(20 fb)
 - WW*(2l2v) (σ = 39 ab), continuum background σ ~O(5 fb)
 - WW*(4j) (σ = 173 ab), qqbar background σ ~O(100 pb)
 - $ZZ^*(2j2v)$ ($\sigma = 14$ ab), continuum background σ ~O(270 ab)
 - $ZZ^*(2|2j)$ ($\sigma = 6.7$ ab), continuum background σ ~O(134 ab)
 - bb(2j) ($\sigma = 922$ ab) continuum background $\sigma \sim O(20 \text{ pb})$
 - gg(2j) ($\sigma = 139$ ab) continuum background $\sigma \sim O(100$ pb)

Example Channel: e⁺e⁻ → H(WW*) → 2I2v

- PYTHIA8 for signal & backgrounds at $\sqrt{s} = m_H = 125$ GeV. Final state: 2 isolated (ΣE < 1 GeV, Δ R<0.25) leptons $e, \mu, \tau(e), \tau(\mu)$ +Miss.En. no unisolated leptons or final state hadrons, within $|\eta|$ <5 (acceptance). This retains 60% of the σ (WW*(2l2nu)) = 39 ab.
- Kinematic Cuts: Sphericity > 0.03 ¬ Kills tautau $\Delta R(I,ME) > 1.5$ ¬ Kills tautau $\cos(\theta_{112}) > -0.6$ ¬ Kills tautau
- We can exploit different lepton angular correlations from spin-0 decays into $W^-(l_{\scriptscriptstyle L}v_{\scriptscriptstyle L})W^+(l_{\scriptscriptstyle R}v_{\scriptscriptstyle L})$ and continuum to reduce the latter. MVA across kinematic and angular variables reduces WW* continuum.
- Signal & backgrounds before kinematics/MVA (left) and after (right):

```
H(WW*): \sigma = 23 \text{ ab} \Rightarrow \sigma(\text{after cuts}) \sim 13 \text{ ab}

qqbar: \sigma \sim 0^* \text{ pb} \Rightarrow \sigma(\text{after cuts}) \sim 0 \text{ ab}

\tau - \tau: \sigma \sim 1.3 \text{ pb} \Rightarrow \sigma(\text{after cuts}) \sim 1 \text{ ab}

WW*: \sigma = 3.4 \text{ fb} \Rightarrow \sigma(\text{after cuts}) \sim 705 \text{ ab}

ZZ*: \sigma = 29 \text{ ab} \Rightarrow \sigma(\text{after cuts}) \sim 2.03 \text{ ab}
```

For L_{int}=1 ab⁻¹

$$S/\sqrt{B}\sim 13/\sqrt{708}\sim 0.5$$

Significance ~ 0.5
BR(Hee) < $6\times$ BR_{SM} (3σ)
 g_{hee} < $2.6\times g_{Hee,SM}$ (3σ)

^{*}preselection kills this channel entirely

Results

 Combining the statistics of different channels, we can see the combined statistical significance for all of our channels!

Channel	Significance (1 ab ⁻¹)	Significance (6 ab ⁻¹)	Significance (10 ab ⁻¹)
WW->lvjj	0.75	1.85	2.38
WW->2I2v	0.49	1.20	1.55
ZZ->2j2v	0.60	1.47	1.89
bb	0.15	0.36	0.46
WW->4j	0.18	0.45	0.58
ZZ->2l2j	0.24	0.60	0.77
gg	0.09	0.23	0.30
Combined	1.14	2.78	3.60

Conclusions

- While a 5σ signal is out of reach, observations (3σ) seem feasible, and our preliminary analysis indicates that (under admittedly ideal conditions), a reasonable upper limit could be detected!
- At L_{int}=10 ab⁻¹, our significance gives...

```
3.6\sigma \rightarrow BR(Hee) < 1.39*BR_{SM}(5\sigma) \rightarrow g_{hee} < 1.18*g_{Hee,SM}(5\sigma)
```

- Complication: ISR and beam energy spread provide extreme reductions in the signal (~1/4)... Continuing work being done to work around this issue what limits can we set in a real experiment?
 - Beam polarization
 - Determining ISR effect on background

