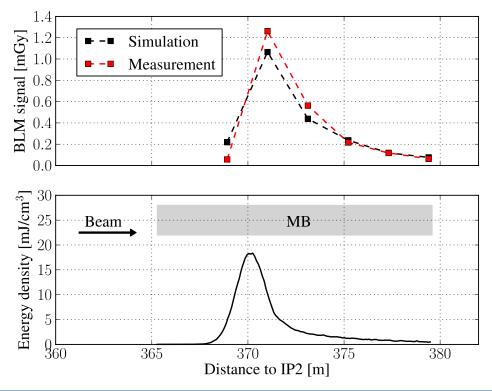
6th QTAWG meeting, March 28, 2014

Quench Test Analyses: An Overview

Overview


6 tests/events have been analyzed.

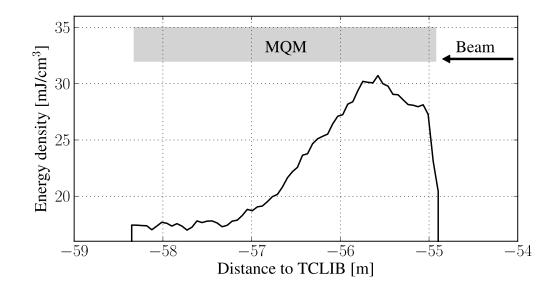
Regime	Method	CERN naming	Magnet type	Temperature
short	kick	750 µrad kick event	MB	1.9 K
short	collimation	Q6 QT	MQM	4.5 K
intermediate	wire scanner	Wire scanner QT	MBRB	4.5 K
intermediate	wire scanner	Wire scanner QT	MQY	4.5 K
intermediate	orbit bump	Fast-loss ADT QT	MQ	1.9 K
steady-state	collimation	Collimation	MB	1.9 K
steady-state	orbit bump	Steady-state loss ADT QT	MQ	1.9 K
steady-state	dyn. orbit bump	Dyn. orbit bump QT	MQ	1.9 K

Strong-Kick Quench Event

- Recall: 2008 a large orbit kick during injection studies caused a quench in an MB.
- Reasons to include the event:
 - Information on quench level at injection energy and for fast losses at 1.9 K.
 - Presumably straight-forward beam dynamics (20-m drift space between corrector and MB).

- Uncertainty on initial conditions and corrector strengths in MAD-X model.
- Resulting uncertainty FLUKA longitudinal and transverse loss distribution.
- Electro-thermal MQED estimate based on strand enthalpy.

TABLE I. Comparison of FLUKA upper bound (UB) and the electrothermal MQED estimate.


FLUKA UB	MQED
[mJ/cm ³]	[mJ/cm ³]
18^{+7}_{-0}	38

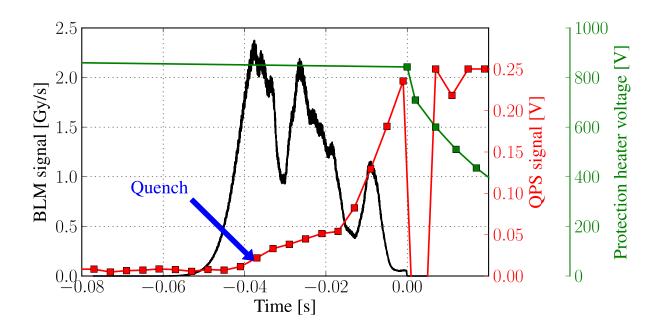
- More data for MAD-X validation would be required.
- MQED estimate probably within the error margin.

Short-Duration Collimation QT

- Formerly Q6 QT.
- Are the non-saturated BLM signals to be trusted?
- Geometry of FLUKA model needed refinement.
- Electro-thermal MQED estimate based on strand enthalpy.

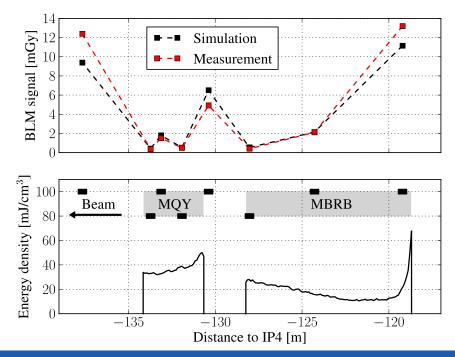
- MQED at 2000 A is below the FLUKA lower bound.
- Is there still a missing geometrical feature?
- Could the non-saturated BLM signals be correct?

TABLE II. Comparison of FLUKA lower bound (LB) and upper bound (UB) and the electro-thermal MQED estimate.


Current	FLUKA LB	FLUKA UB	MQED
[A]	[mJ/cm ³]	[mJ/cm ³]	[mJ/cm ³]
2000	29	n/a	20
2500	n/a	31	16

Any feature that could shield losses is relevant for collimation quench tests.

Wire-Scanner QT


- Wire sublimation and low velocities lead to vibrations and non-Gaussian time-dependence of losses.
- Precise moment of quench cannot be determined.
- Involved calculation of number of lost protons in the last (quenching) test.

Wire Scanner QT

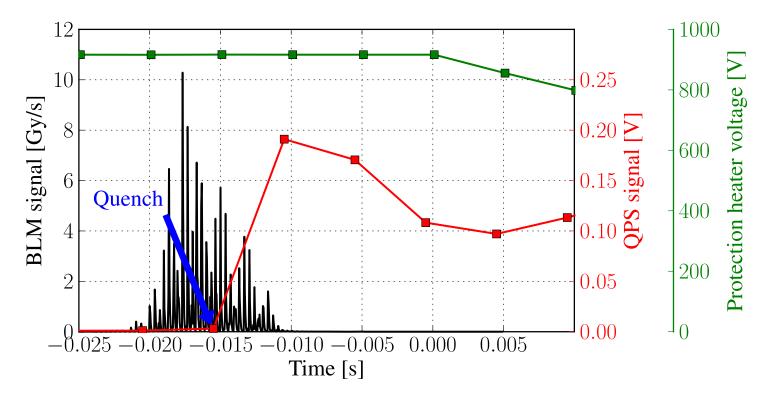
- Good agreement with BLM vindicates the calculation of protons lost.
- Losses in MQY (Q5) and MBRB (D4) studied.
- Losses in MBRB occurred in magnet ends:
 - FLUKA does not provide the correct coil geometry.
 - The electro-thermal model suffers from unknown field and cooling conditions.

- Unknown timing of quench requires parametric study.
- Unkown field and cooling induce uncertainties in electro-thermal model.
- FLUKA error due to end geometry unknown.

TABLE III. Comparison of FLUKA lower bound (LB) and upper bound (UB) on the electro-thermal MQED estimate in the MBRB coil.

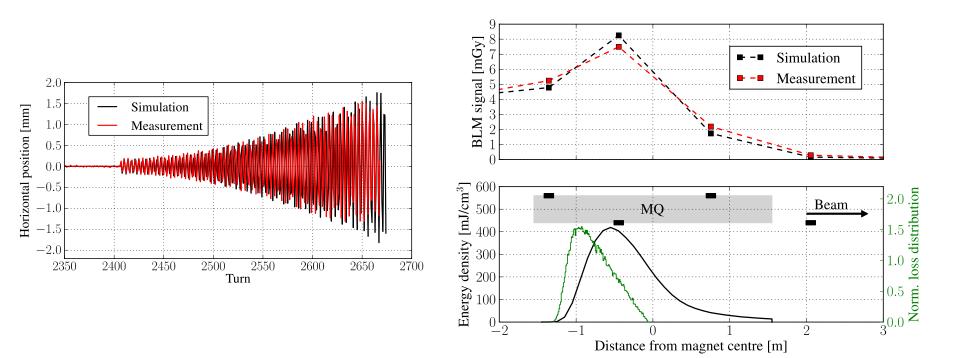
-	$v_{\rm w}$	$N_{\rm q}/N_{\rm w}$	FLUKA LB	FLUKA UB	MQED
	[m/s]	[%]	[mJ/cm ³]	[mJ/cm ³]	[mJ/cm ³]
	0.15	n/a	18	n/a	37^{+0}_{-11}
	0.05	30	n/a	20	35^{+0}_{-11}
_	0.05	45	n/a	30	42_{-16}^{+0}

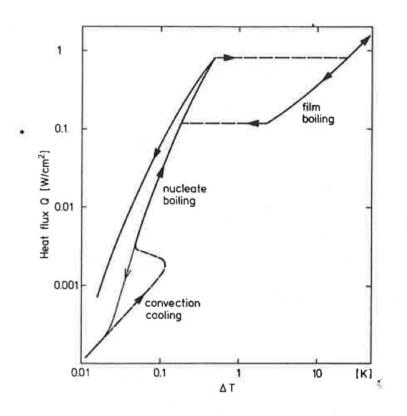
TABLE IV. Comparison of FLUKA lower bound (LB) on the electrothermal MQED estimate in the MQY coil.


$v_{\rm w}$	FLUKA LB	MQED
[m/s]	[mJ/cm ³]	[mJ/cm ³]
0.05	50	52

Functioning oscilloscope is mandatory!

Intermediate-Duration Orbit-Bump QT


- Orbit-bump + MKI kick + ADT in sign-flip mode create 10 ms of losses with short spikes ever 4 turns.
- Time of quench again not accurately known.


Intermediate-Duration Orbit-Bump QT

- MAD-X model tuned to match BPM data.
- Good FLUKA BLM agreement.

Transient Nucleate Boiling

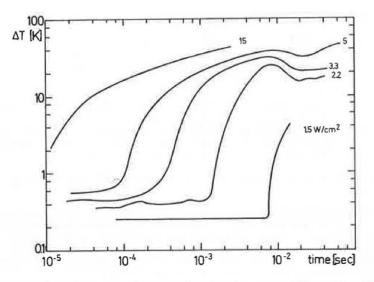


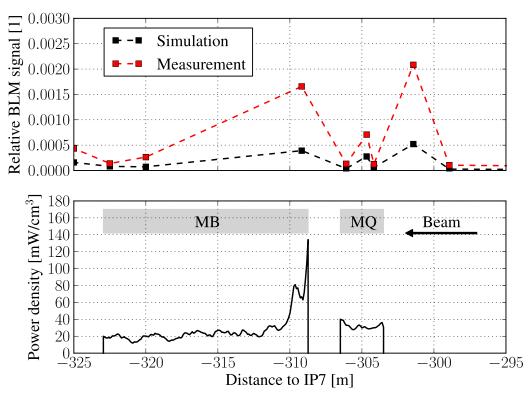
Fig. 9 - Transient heat transfer experiment using a monofilamentary NbTi/Cu superconductor (NbTi diam. 36 μm, Cu diam. 52 μm) both as a heater and a thermometer. The plot shows surface temperature traces for various heat fluxes Q. From Ref. /34/.

Fig. 1 - Steady-state heat transfer characteristic. The curve is attificially composed of experimental results in Refs. 6,7,11.

C. Schmidt, *Review of Steady State and Transient Heat Transfer in Pool Boiling He I.* Saclay, France: International Institute of Refrigeration: Commision A1/2-Saclay, 1981, pp. 17–31.

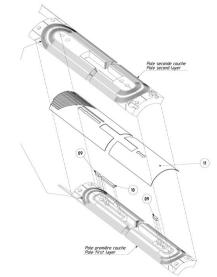
- Nucleate boiling is the most efficient cooling regime.
- Large heat fluxes are possible for short durations.
- Could this explain the large discrepancy between FLUKA LB and MQED estimate (without nucleate boiling)?

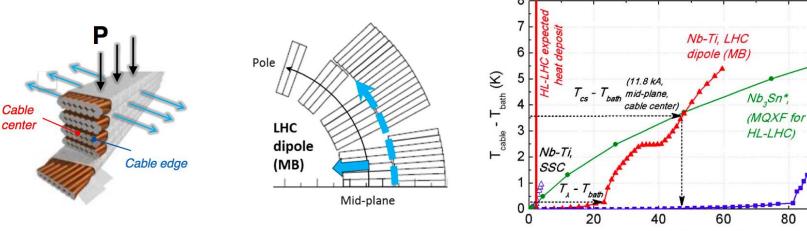
TABLE V. Comparison of FLUKA lower bound (LB) and upper bound (UB) on the electro-thermal MQED estimate in the MQ coil.


N _p	$N_{\rm q}/N_{\rm p}$	FLUKA LB	FLUKA UB	MQED
-	[%]	[mJ/cm ³]	[mJ/cm ³]	[mJ/cm ³]
3.5×10 ⁸	n/a	198	n/a	$71^{+?}_{-10}$
8.2×10 ⁸	62	n/a	250	$58^{+?}_{-8}$
8.2×10 ⁸	99	n/a	405	$80^{+?}_{-10}$

- Preliminary numerical experiments suggest MQED could be as high as 230 mJ/cm³!
- Nucleate boiling may have very different effect for different loss durations in the 1-10 ms regime.

Collimation QT


- Peak losses in the MB end.
- Local factor 4 in BLM vs. FLUKA despite overall good agreement.
- No upper bound from quench.



Electro-thermal analysis

- Measured heat-extraction from stack-test.
- "Fish-bone" structure raises question how to extrapolate stack data to coil inner layer.
- Assumption: Fish-bone is 100% efficient up to $T_s = T_{\lambda}$, and preserves that heat flux for $T_s > T_{\lambda}$.

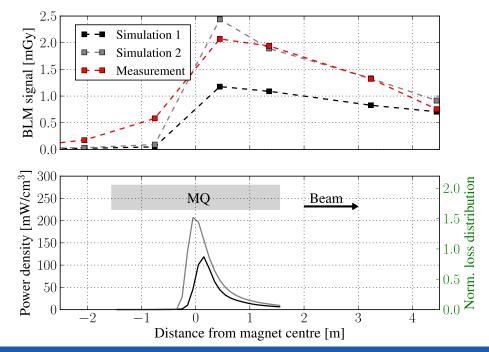
Power density scaled to coil geometry

80

Graphs and drawings from P.P. Granieri et al., "Deduction of Steady-State Cable Quench Limits for Various Electrical Insulation Schemes With Application to LHC and HL-LHC Magnets", IEEE Trans. on App. SC, Vol. 24(3), June 2014.

- Lower MQPD estimate neglects fish-bone.
- Uncertainties due to quench in the ends not considered.
- Recall factor 4 scaling in BLM data.

TABLE VI. Comparison of FLUKA lower bound (LB) and the electro-thermal MQPD estimate in the MB.A9L7 coil.


FLUKA LB	MQPD
[mW/cm ³]	$[mW/cm^3]$
50	140_{-25}^{+0}

- The electro-thermal model cannot be considered as validated.
- We need
 - better BLM agreement,
 - refined coil-end model,
 - and actual quench as upper bound.

Steady-State Orbit-Bump QT

- Orbit-bump and ADT in white-noise mode blow up the beam.
- Strong sensitivity of MAD-X model to steps of several 10 µm in the beamscreen surface.
- Simulation 2 includes 30 µm surface roughness to show that actual BLM signal lies within the uncertainty range of the model.

- FLUKA larger values include 30 µm surface roughness.
- Lower MQPD estimate neglects "fish-bone".

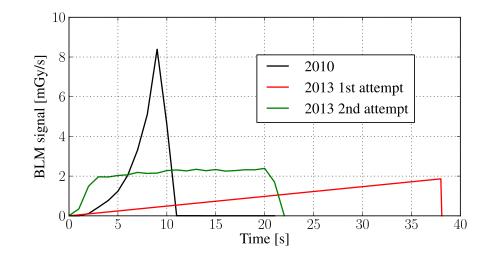


TABLE VII. Comparison of FLUKA lower bound (LB) and upper bound (UB) and the electro-thermal MQPD estimate.

attempt	FLUKA LB	FLUKA UB	MQPD
	[mW/cm ³]	[mW/cm ³]	[mW/cm ³]
1st	33^{+22}_{-0}	n/a	99 ⁺⁰ ₋₂₀
2nd	n/a	41^{+28}_{-0}	88_{-18}^{+0}

This result cannot be seen as a validation of the fish-bone model.

Overview

TABLE VIII. Overview of the presented analyses. LB/QL and UB/QL are the ratios between, respectively, the lower and upper bounds from FLUKA, and the estimated quench levels. For consistency, LB/QL should be below 1 and UB/QL above. Bold font indicates inconsistencies.

Regime	Method	Туре	-	I/Inom	LB/QL	UB/QL	Comment
			[K]	[%]			
short	kick	MB	1.9	6	n/a	0.47 ^{+0.19} ₋₀	Tracking uncertainty.
short	collimation	MQM	4.5	46/58	1.45	1.94	Saturated BLM signals. No FLUKA validation.
intermediate	wire scanner	MBRB	4.5	50	0.48 ⁺⁰ _{-0.21}	0.71 ^{+0.44} ₋₀	Timing uncertainty. Quench in ends. UB for $N_q/N_w = 45\%$.
intermediate	wire scanner	MQY	4.5	50	0.96	n/a	No upper bound.
intermediate	orbit bump	MQ	1.9	54	2.79 ^{+0.46} _{-?}	4.31 +0.7	Timing uncertainty. Nucleate boiling? UB for $N_q/N_p = 62\%$.
steady-state	collimation	MB	1.9	57	0.36 ⁺⁰ _{-0.08}	n/a	Peak loss in magnet ends. Cooling. Moderate FLUKA agreement with BLM signals. No upper bound.
steady-state	orbit bump	MQ	1.9	54	0.33 +0.36 -0	0.47 ^{+0.52} ₋₀	Sensitivity to surface roughness. Cooling.
steady-state	dyn. orbit bump	MQ	1.9				Cooling.

Most cases show discrepancies between upper and lower bounds and quenchlevel estimate.

In some cases consistent results are within the known margins of uncertainty.

Lessons learnt by method

- Orbit-bump and kick:
 - Require accurate MAD-X model.
 - Tolerances on beam screen and surface roughness increase the error bars.
- Wire scanner:

•

•

- Slow movement and wire sublimation lead to vibrations.
- Actual position induces quenches in the magnet ends (problems for FLUKA and electro-thermal model).
- Oscilloscope required.
- Collimation:
- Steady-state: QTs yield valuable information even without FLUKA/electrothermal analysis.

Lessons learnt by analysis

- MAD-X:
 - Needs highly accurate knowledge of initial conditions.
 - Measure tune, emittance, etc. as close as possible to the test!
 - Determination of error bars via parametric studies.
 - FLUKA:

- Very precise geometrical models needed.
- Large-scale model yields over-all good agreement however, large error bar at peak-loss.
- Improved model of coil ends would be needed.

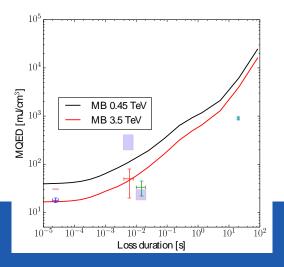
Electro-thermal:

- Relevant cooling and field parameters not accurately known for peak losses in magnet ends.
- For short-duration losses we trust the model.
- For intermediate-duration losses at 1.9 K, nucleate boiling may increase MQED considerably.
 Loss spikes make the modeling of nucleate-boiling even more difficult.
- For steady-state losses, the efficiency of "fish-bone" structure not yet tested.

Lessons learnt by regime

Short duration:

•


•

- We trust the MQED estimate.
- Intermediate-duration:
 - Install oscilloscopes to increase resolution and provide synchronization for BLM and QPS signals.
 - More tests at 4.5 K and 1.9 K producing smooth losses in the magnet straight sections.
 - Steady-state:
 - Find means to improve MAD-X (orbit-bump) and FLUKA (collimation) models.

Next steps

- 1. Sections on strong-kick event and steady-state orbit-bump QT need to be finalized.
- 2. Results overview needs to be improved (graph?). Suggestions are welcome!
- 3. Internal review.
- 4. Anton et al. write a paper on FLUKA modeling, which shall be submitted at the same time as this paper.
- 5. Time permitting, the dynamic orbit-bump QT could be included.
- 6. Submission by end of April / middle of May.
- 7. Best-knowledge model is being finalized for BLM threshold calculations.

