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HV CMOS detectors 

• 2005: Project proposal submitted to BW-Stiftung: “Monolithic Detector in High Voltage Technology” 

• Project approved and funded with 40k€ 

•  Two patent applications: “Monolithic detector in high voltage technology” and “Hybrid pixel 

detector for high energy radiation made with two capacitive coupled chips” 

• First presentation of results: Vertex 2006 

• First publication: I. Peric; "A novel monolithic pixelated particle detector implemented in high-

voltage CMOS technology," Nucl. Inst. Meth. A 582, pp. 876-885 (2007) 

• Since then 23 submitted chips 

• AMS H35: 8 chips, AMS H18: 11 chips, UMC 180nm 2 chips, UMC 65nm 2 chips (OKI SOI 2 

chips) 

• Total cost of the chips ~ 209 k€ 

• >10 Publications 

• ~56 Authorships 

• Institutes using the chips: Bonn, CPPM, CERN, Geneva, Göttingen, Glasgow, Heidelberg, Mainz, 

PSI, Belgrade (planned), LBNL (Planned), RAL, Santa Cruz (planned) 

• Experiments: Mu3e (basic technology), ATLAS (option), CLIC (option), Panda Luminosity Monitor 
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HV CMOS detectors (and 2 SOI) 
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HV CMOS detectors 

• 2005: State of the art CMOS sensors are based on diffusion (MAPS) 

• Motivation: Develop a CMOS sensor structure that is: 

• Compatible with the standard CMOS (cheap and fast prototyping/large scale production) 

• Based on fast and efficient charge signal collection by drift (HV needed to deplete sensor) 

• Radiation tolerant 

• With high time resolution 

• Suitable for particle physics at LHC 
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HV CMOS detectors 

• HVCMOS detector structure 

• PMOS and NMOS transistors are placed inside their shallow wells (fully CMOS possible!!!) 

PMOS NMOS 

Shallow n-well 
Shallow p-well 
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HV CMOS detectors 

• A deep n-well surrounds the electronics of every pixel 

PMOS NMOS 

deep n-well 
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HV CMOS detectors 

• The deep n-wells isolate the pixel electronics from the p-type substrate 

PMOS NMOS 

deep n-well 

p-substrate 
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HV CMOS detectors 

• The substrate can be biased low without damaging the transistors 

• In this way the depletion zones in the volume around the n-wells are formed 

• => Potential minima for electrons 
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HV CMOS detectors 

• Charge collection occurs by drift. (main part of the signal) 
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HV CMOS detectors 

• Charge collection occurs by drift. (main part of the signal) 

• Additional charge collection by diffusion 
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HV CMOS detectors 

• The deep n-wells are biased using high ohmic devices 

• Charge collection leads to a voltage signal that can be amplified 

• The use of charge sensitive amplifiers improves signal to noise ratio  
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HV CMOS detectors 

• HVCMOS sensors can be implemented in any CMOS technology that has a deep-n-well 

surrounding low voltage p-wells 

p-substrate 
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Potential energy (e-) 

deep n-well 
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CMOS pixel flavors 

• CMOS pixel flavors (five years ago) 

Standard MAPS INMAPS 

HVCMOS TWELL MAPS 
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<-60V 
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Radiation tolerance 

MAPS (as comparison) 

High-voltage monolithic detectors 

drift 

Rad. damage 

Rad. damage 
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CMOS pixel flavors 

• CMOS pixel flavors (now) 

HRCMOS 

HVCMOS 

NMOS shielded by a deep p-well 

PMOS in a shallow p-well 

N-well (collecting region) 
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HV CMOS detectors (and 2 SOI) 
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Ideal Detector for LHC 
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Fully depleted sensor 

• State of the art: Fully depleted hybrid pixel detectors (or strip detectors) based on a passive 

sensor on high quality substrate 

• Fully depleted detectors work good but have some drawbacks 

• Drawbacks – high price, scientific: small pixels not possible, thickness 

• If we propose a new technology, it must be better for science 
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HVCMOS sensor 

• HVCMOS for LHC: possibly smaller pixels and thinner 

• Ideal pixel size ~ 25μm 

• Ideal thickness = ? 

HV~100V 
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Reduced pixel size for better 
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Thin sensor – little deflecting 
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One side processing only 
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HR/HVCMOS sensor 

• Ideal thickness = ? 

• If depleted layer thickness > pixel size reduces spatial resolution, adds redundant information 

• Ideal thickness ~ 25-50μm 

HV~100V 

100um 

Lower capacitance 
25um 

Ionization along the track 
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HVCMOS sensor 

• Ideal thickness ~ 25-50μm 

• Drawback: reduced signal 

HV~100V 
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Thin depleted layer 
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Detector capacitance 

• Idea: compensate smaller signal with smaller detector capacitance 

Q 

q 

v 

V 
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HVCMOS sensor 

• Ideal thickness ~ 25-50μm 

• Reduced signal 

HV~100V 

25um 
50um 

20 Ohm cm 

25um 

CCPD concept 

Complex readout 

electronics in readout chip 

Sensor pixels relatively 
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Optimal substrate resistivity 
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HVCMOS sensor 

• In order to achieve a high radiation tolerance, we would prefer highest possible electric field 

• High drift speed -> small probability for charge trapping 

25um 
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HVCMOS sensor 

• In order to achieve a high radiation tolerance, we would prefer highest possible electric field 

• High E-field -> high drift speed -> small probability for charge trapping 
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HVCMOS sensor 

• In order to achieve a high radiation tolerance, we would prefer highest possible electric field 

• High E-field -> high drift speed -> small probability for charge trapping 

• Let us assume Emax ~ 10 V/µm (Conservative assumption but it compensates for actual 

cylindrical geometry) 
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HVCMOS sensor 

• In order to achieve a high radiation tolerance, we would prefer highest possible electric field 

• High E-field -> high drift speed -> small probability for charge trapping 

• Let us assume Emax ~ 10 V/µm 

• Optimal substrate resistivity ~ 55 Ωcm 

E Emax 

cmRcmNa   55104.2 314

VVbias 125
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HVCMOS sensor 

• Edge effects or cylindrical/radial geometry can reduce the maximal voltage 

• Problem: biasing of guard rings 

 

HV Bias 

LV 
5.5um 
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HVCMOS sensor 

• Edge effects or cylindrical/radial geometry can reduce the maximal voltage 

• Problem: biasing of guard rings – can be left floating to relax field – TCAD simulations should be 

done 

Float or smaller voltage 

LV 
5.5um 
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HRCMOS sensor 

NMOS shielded by a deep p-well 

PMOS in a shallow p-well 

N-well (collecting region) 

• HRCMOS structure: voltage difference at the surface  

• HVCMOS structure: voltage difference in vertical direction, less at the surface  

XXum 
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Results 
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ATLAS Pixels 
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HVCMOS for ATLAS Pixels 

36 

• CCPD 

• Digital outputs of three pixels are multiplexed to one pixel readout cell 

• HVCMOS pixel contains an amplifier and a comparator 

+ 

TOT = sub pixel address 

Readout pixel 

Size: 50 µm x 250 µm 

Size: 33 µm x 125 µm 

Different logic 1 levels 
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CCPD detector (HV2FEI4) 

37 

• The digital outputs of three pixels are multiplexed to one pixel readout cell 
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CCPD – Prototypes in H18 

November 2011: CCPDv1 

November 2012: CCPDv2 

November 2013: CCPv3/CLICPIX 

June 2014: CCPv4  
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Results 

1) CCPDv1: SNR after neutron irradiation at Jozef Stefan Institute 1015 neq/cm2 ~20 (5C, -55V bias) 

(Signal ~ 1180e) (measured 2014) (Unirradiated chip @ -50V bias: 1600e) 

2) CCPDv2: works after 862 Mrad (x-ray irradiation CERN) (noise at room temperature 150e) 

3) CCPDv1: sub pixel encoding works measured for one pixel – still needs optimization 

39 
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Results 

CCPDv2 and v1: test beam measurements in 2013(DESY) and 2014 (PS): efficiency 97% 

Sub pixel coding not used 

Timing still not as needed 

40 

DESY Testbeam 
PS Testbeam 
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Results 

Edge TCT measurements (University of Geneve) 

41 
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Results 

Depleted layer thickness around 15 μm 

Bias voltage magnitude increased to the left in these graphs 

The quick charge zone increased with bias magnitude 

42 

15μm 

Signal collected within first 3ns 
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Results 

Depleted layer thickness is around 15 μm 

43 

Signal collected within first 3ns 

Not irradiated Irradiated 1015 neq/cm2 

at Jozef Stefan Institute 
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Results 

When the HV2FEI4v3 sensor was irradiated its slow signal was reduced by an order of magnitude. 

A possible explanation could be trapping of charge carriers 

The fast signal, however, did not loose significant height in the conditions considered 
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Results 

The fast signal, however, did not loose significant height in the conditions considered 

45 
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HVCMOS detectors 

46 

• Average pixel noise ~ 75e (large spread) 

• Threshold tuning: dispersion ~ 25e 

• Measured MIP signal at 60V: 1600e/1180e 

• Required: 

• 6 x SD(Noise) + 6 x SD(Threshold) = Smallest signal 

• 600e = Smallest signal? 

• Question: Smallest signal for MPW = 1100e (probably ~ 1180/2 = 600 e) 

• We are almost there 
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CLIC 
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Development for CLIC 

48 

• CLIC requirements – little material, high spatial and time resolution 

• Option: capacitively coupled pixel detector 

• Test detector has been produced (CCPDv3) that can be readout with CLICPIX chip 

• Pixel size: 25 µm x 25 µm  

• Every HVCMOS pixel has its own readout cell 

Readout pixel 

Size: 25 µm x 25 µm 

Size: 25 µm x 25 µm 
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CCPDv3 

• CLIC pixels – excellent SNR  

• Noise for small pixels (25 μm x 25 μm) with analog readout 30e 
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ATLAS Strips 
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HVCMOS for ATLAS strip layers 

Pixel contains a 

charge sensitive 

amplifier 

 

CSA 

1 

1 

One of possible concepts: Strips are segmented into (long) pixels. Every pixel has its own readout cell, 

placed on the chip periphery 

The periphery generates pixel addresses with a constant delay respecting the hit 

Redundant address lines used to cope with simultaneous hits 

Strip readout chip (like ABCN) replaced by a purely digital chip (based on existing digital parts) 
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HVStrip test chip in AMS H35 
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Mu3e 
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Mu3e Detector 

Scintillator tiles 

Recurl pixel layers Outer pixel layers 

Inner pixel layers 

Scintillating fibres 

• Search for particle event µ+ -> e+e-e+ 

• High muon decay rate 109/s 

• Low momentum resolution 0.5 MeV/c 

• Vertex resolution 100 µm 

• Time resolution 100 ns (pixels) (1 ns scintillator fiber) 

• Four pixel layers 80x80m2 pixel size, 275 MP 

• Pixel detector thickness:  ~50 m 

• Cooling with helium 

• Pixel detector area: 1.9 m2 

• Heidelberg, PSI, Zürich, Genf 
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Mu3e Detector 

Kapton PCB & 

Supporting structure 

Thinned chips 

1cm Pixels – active region  

~0.5 mm 
EoC logic 
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Structure of the detector 

RAM/ROM 
Hit flag 

Priority scan logic 

Time stamp Data bus 

Read 

Row/Col Addr + TS 

One RO cell 

/pixel 

Readout cell function – time stamp is stored when 

hit arrives 

Hit data are stored until the readout 

Priority logic controls the readout order 

RO cell size in 0.18 µm AMS technology ~ 7 µm x 

40 µm 

(with comparator and threshold-tune DAC) 

Comparator 

and Thr tune DAC 

Pixel contains a 

charge sensitive 

amplifier 

 

CSA 

Concept: Every pixel has its own readout cell, placed on the chip periphery 
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MuPixel 
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92µm 

3 mm 

Readout cell 

One pixel 
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MuPixel test beam 

• Test-beam measurement February 2014 DESY 

• Result analysis: Moritz Kiehn, Niklaus Berger, PI 

Heidelberg 

• 99% efficiency measured 

59 
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MuPixel test beam 

• Test-beam measurement October 2013 DESY 

• Time resolution: 18ns (sigma) (not corrected for the pixel to pixel delay dispersion and charge 

sharing) 

60 

18ns sigma 

Probably caused by indirect hits 
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Thin detectors 

• Chips have been thinned to < 100 μm and successfully tested 

61 

THICK 

THIN 

450 MeV pion signals 
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New prototypes 

• April 2014 a chip version (MuPix6) with improved threshold-tuning circuitry and two stage 

amplification produced 

• August 2014 new chip version (MuPix7) with high speed serial transmission (up to1.6GBit/s) 

submitted 

• The chips have been ordered thinned to < 50 μm 
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Summary 
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• HVCMOS sensors are options for ATLAS pixels, ATLAS strip-layers, CLIC and Mu3e experiments 

• Mu3e: 

• Several test chips have been successfully tested 

• Trigerless readout, time resolution <100ns 

• Efficiency of ~99% have been measured in test beam 

• Chips have been thinned to <100μm and they work 

• ATLAS: 

• We are developing prototypes that can be readout using FEI4 

• Capacitively coupled pixel sensors in AMS technology – segmented pixels 

• We measure good SNR (~20) after 1015 neq/cm2, detectors work after 800MRad 

• Test-beam results are still preliminary, efficiency ~97% 

• We are planning to improve the SNR by reducing the noise and/or implementing of sensors on 

100 Ωcm substrates  

• CLIC: 

• HVCMOS CCPD with 25μm x 25μm pixels capacitively readout with CLICPIX has been 

successfully tested 

• High SNR measured, first test beam measurement done in August 

• ATLAS strip layers 

• HVCMOS sensor are an option for ATLAS strip layers  

• HVCMOS sensor prototype (segmented strips)  has been produced in AMS H35 technology 

• Hit information transmitted digitally via several address links to the digital readout chip (based on 

the digital part of ABCN chip) constant delay multiplexing 


