

Design of CMOS Pixels Sensors for the STAR Experiment

Christine Hu-Guo (on behalf of the PICSEL team of IPHC-Strasbourg)

CPS (CMOS Pixel Sensors) Long Term R&D (1)

- R&D activity of CPS initiated in 1999 for future subatomic physics experiments which express a growing need for very high performance flavor tagging
 - Physics constraints: high resolution, low material budget, swift readout and radtol were not achievable simultaneously by existing detectors at that time
 - At the beginning of the R&D, numerous simple demonstrators were designed
 - ★ To study critical parameters: CCE, S/N, E_{det}, ... in radiation environment To find the optimum CMOS process for this new CPS technology
 - → Validate proof of detection concept

Assistant Prof. UDS (2001)
CMOS Sensor Design group leader at RAL (UK)

- Ph.D student UDS (2002)
- ASIC development group leader at Fermilab (USA)

IPHC christine.hu@in2p3.fr

calibrated with 55 Fe Xray (5.9 keV

CPIX14 15-17 September 2014, University of Bonn

Long Term R&D (2)

- R&D activity of CPS initiated in 1999 for future subatomic physics experiments
- First contact for STAR PXL took place in Year 2000 during the workshop Vertex-2000

VERTEX 2000 9th International Workshop on Vertex Detectors Sleeping Bear Dunes National Lakeshore, Michigan, U.S.A. September 10–15, 2000 MONOLITHIC ACTIVE PIXEL SENSORS FOR A LINEAR COLLIDER (Marc WINTER - IRES (Strasbourg)) on behalf of IRES+LEPSI coll.

- Physics Motivations
- Principle of Operation of M.A.P.S.
- · Characteristics of 1st MAPS protolype
- . Beam test Results (preliminary)
- Outlook

First Announcement

Submission of Proceedings

Referees

Registration

Workshop Program

Presentations

Picture

A new Inner Vertex Detector for STAR

> H. Wieman Vertex 2000

> > IPHC christine.hu@in2p3.fr

CPIX14 15-17 September 2014, University of Bonn

Long Term R&D (3)

- R&D activity of CPS (CMOS Pixel Sensors) initiated in 1999 for future subatomic physics experiments
- First contact (H. Wieman & M. Winter) for STAR PXL in Year 2000 during Vertex-2000 workshop
- Three years later, the partnership between LBNL and IPHC became a reality thanks to the further discussion between H. Wieman & G. Deptuch, W. Dulinski, M. Winter
- First prototype in Year 2004 → Final Sensor fabrication in Years 2011, 2013
- → STAR PXL sensor R&D allows tracing back the evolution of CPS
 - Solution At the beginning of the development, there were no roadmap, no defined architecture, ...
 - ✤ Physics constraints:
 - * Detection efficiency > 99.5%, space resolution < 10 μm
 - * Material budget: the goal ~0.3% X_o /layer \rightarrow air cooling \rightarrow low power consumption
 - * Radiation load: 150 kRad/yr & few $10^{12} N_{eq}$ /cm²/yr
 - * Hit density ~ 2.4×10^5 hits/cm²/s
 - Solution Available budget marginally adapted to commercial CMOS processes (no specific R&D)
 - * Mitigates the intrinsic detection performance
 - Sensor R&D may be classified into 3 periods: Early-, Mid- and Mature stages
 - ★ Corresponding to 3 generations of CMOS pixel sensors
 - * Sensor specifications progress with CPS development & CMOS technology evolution

Early-Stage of CPS Development: ... - 2006 (1)

- Study of CCE, S/N, Noise ~ f (Type, layout & dim. of diode, No. of diodes / pixel, Pixel pitches;...) P
- Study of radiation tolerance by using special layout: removing thick oxide surrounding N-well P diode by replacing with thin-oxide
 - \star 3T or 2T pixels
 - ★ Rolling shutter analogue readout
- First prototypes for PXL: 2T pixels, multiplexed analogue output RO
 - MimoStar-1 (Mimosa-10, TSMC 0.25, 2004) & MimoStar-2 (Mimosa-14, AMS 0.35 opto, 2005) P
 - ★ 2007: A MimoSTAR-2 sensors based telescope was constructed by LBL and performed measurements inside STAR detector environment
 - → Validate CPS detector concept for STAR PXL

Early-Stage of CPS Development: ... - 2006 (2)

- Half-reticule sensor: MimoStar-3 (Mimosa-20, AMS 0.35 opto, 2006) to validate yield performances
 - \checkmark Pixel array: 640 x 320, 30 μ m pixel pitches (~2x1 cm²)
 - \sim ~2 ms integration time \rightarrow 4 ms for full reticule sensor
 - 🌭 2 serial output links at 50 MHz
- → Finding suitable CMOS process: AMS 0.35 µm opto
- Scaling from small prototype to half-reticule size sensor was not straightforward
 - ✤ Initial yield was 10-20 %
 - Fault analysis by LBL: Problem with incomplete via contacts in the middle of wafer (some features of our design may be the origin of the pb.)

Gap between via and metal layer E

LO.565

MimoStar-3

19.205 mm

\rightarrow Solved by adjustments in the fabrication process

- Weaknesses of the 1st generation analogue output sensor:
 - ⓑ Long integration time (4 ms, was complying with initial requirement): events pile-up
 - Scross talk between analogue channels in a flex cable

IPHC christine.hu@in2p3.fr

2 2007

Green: dead pixels

Mid-stage of CPS Development: 2003 - 2008 (1)

CPIX14 15-17 September 2014, University of Bonn

Mid-stage of CPS Development: 2003 - 2008 (2)

- ⅍ A to D Conversion at end of column
 - \star For STAR PXL detector, considering the resolution requirement (10 μ m), 1 bit ADC was sufficient
 - → 1 discriminator ending each column (Y. Degerly. Irfu/Saclay)
 - ★ Small input signal → Offset compensated amplifier stage followed by a latch

Prototypes:

pes: Mimosa-8 (TSMC, 2003), Mimosa-16 (AMS, 2006), Mimosa-22 (AMS, 2007-8)

→ 1st feasibility study of the rolling shutter column-parallel readout architecture

Column-level discriminator

SICt Ro

Slct_Row

36 Gr

SIct

Mid-stage of CPS Development: 2003 - 2008 (3)

- Validation of the rolling shutter column parallel readout architecture
 - → Scaling from Mimosa-22 to PHASE-1 (Mimosa-23 2008) → 2nd generation of STAR PXL sensor
 - ★ Reticle size (1.952 x 2.112 cm²)
 - * Pixel pitch 30 μm
 - ★ 640 x 640 pixels → ~ 410 k pixels
 - * Column parallel readout
 - ★ End-of-column discriminators
 - ★ Binary readout of all pixels
 - ★ Data multiplexed onto 4 LVDS_{TX} @ 160 MHz
 - * Integration time 640 μs

Gain confidence to achieve next design sensor with massive parallel discriminators

- Section 24 Section 24
 - * Discriminators timing optimisation
 - ★ Group division with adjustable reference voltages per group to compensate process dispersions over 2 cm long

CPIX14 15-17 September 2014, University of Bonn

Mid-stage of CPS Development: 2003 - 2008 (4)

✤ A to D Conversion at end of column

CPIX14 15-17 September 2014, University of Bonn

Mid-stage of CPS Development: 2003 - 2008 (5)

 Zero suppression micro-circuit & output memories: SUZE-01 (AMS 0.35 μm, 2007) was based on row by row sparse data scan readout in pipeline mode in 3 steps:

- Solution To find strings of hit pixels (up to N strings) in a row, in parallel in all banks and encode in 2 bits word following by address of the 1st pixel
- 5 To read out the outcomes of the 1st step in all banks and keep up to M strings + add row and bank addresses
- Solution of the stored to a memory buffer: 2 IP's buffers for continuous RO
 - ★ Serial out by 1 or 2 LVDS at up to 160 MHz
- Sizable & adaptive Logic vs. sensor size. SUZE logic was suited to hit density $>^{\sim} 10^6$ hits/cm²/s

Development of building blocks for system level design SoC

Bias DAC, ADC, Latch-up free Memories, Serialiser, Rx-Tx, Slow Controller, Band Gaps, Regulators, Power On Reset, PLL ...

Mature-Stage of CPS Development: 2008 -

- Combine sensing, building blocks & signal processing parts in a large scale sensor:
 - Mimosa-26 (2008): sensor equipping EUDET (FP6) beam telescope P
 - Milestone in CPS development

CPIX14 15-17 September 2014, University of Bonn

 \geq

 \geq

 \geq

 \geq

Mature-Stage of CPS Development: 2008 - ... (2)

■ Final sensor for STAR PXL: ULTIMATE (M-28, 2011) → not only an extension of Mimosa-26

- ⅍ Reduce power dissipation
- ✤ Improve CCE, radiation tolerance
- ✤ Optimise pixels & discriminators uniformity
- ✤ Implement on-chip voltage regulators
- Solution ← Solutio

ULTIMATE main characteristics:

- 🤟 0.35 μm process **with high-resistivity epitaxial layer**
- ⅍ Active area: 19.9 × 19.2 mm², 960 x 928 pixels
- 𝔅 Pixel pitch: 20.7 μm → $σ_{s.p.}$ >~ 3.5 μm expected
- Solumn // architecture with in-pixel ampli. & CDS
- Ind-of-column discri. and binary charge encoding, followed by SUZE logic → suited to >10⁶ hits/cm²/s
- $t_{r.o.} < 200 \ \mu s$ with 2 LVDS outputs at 160 MHz
- ✤ Temperature: 30-35 °C, ~160 mW/cm²
- Sadiation tolerant ~150 kRad/yr & 3x10¹² n_{eq}/cm²/yr

Design review (end of 2010)

→ 1st fabrication in Q1 2011, 2nd batch in Q1 2013

CPS Detection Performance vs. Technology Parameters

High-resistivity epitaxial layer

- 5 2 important parameters for CCE, radiation tolerance: resistivity & thickness of epitaxial layer
- We had no choice on these technology parameters for a long period
 - * Standard EPI layer (~10 Ω .cm) & 14 μ m thick
 - * These limitations fostered going for high voltage CMOS process
 - CCE mitigated by absence of EPI/substrate interface
- Sustomised EPI layers → provide a breakthrough for CPS detectors
 - * We accessed to high resistivity EPI layer since 2011
 - STAR PXL: > 400 Ω.cm (15 μm thick)
- DRIE (Deep Reactive Ion Etching)
 - - * 100 HiRes EPI wafers produced with DRIE pre-dicing for STAR PXL

DRIE cross section, $17 \, \mu m$

MIMOSA-28 edgeless corner

DRIE trenches

CPIX14 15-17 September 2014, University of Bonn

STAR PXL sensors

- Three generations of sensors have been specifically designed for the PXL detector
 - STAR PXL sensors R&D illustrates evolution of CPS development

Courtesy of M. Szelezniak, HICforFAIR Workshop 2014

- Architecture (rolling shutter column parallel readout with integrated zero suppression logic) developed for STAR PXL is well suited to a twin-well CMOS process
 - \checkmark New architectures are being developed with TJ 0.18 μ m CIS process (quadruple well process)
 - * See Marc Winter talk on sensors design for ALICE-ITS upgrade

Conclusion (1)

- STAR PXL is the first CPS based detector in a large physics experiment
 - Sompleted 4 months data taking
- Structuring project both for design & team organisation
 - Design: from sensing elements, ..., building blocks to system level integration (SoC)
 - Team: coherent task dispatching between design, test, system integration
 - ★ 2000: 3 FTE → 2014: ~25-30 FTE
 - ★ ~ 20 Ph.D students involved in the development

- Very successful LBNL-IPHC collaboration in all R&D stages
 - Sensor Development, Construction, Installation, Commissioning
 - ⅍ Know-how exchanges, Rapid reactivity → stimulate further collaborative momentum
 - LBNL: focused on the PXL global architecture, benefited from IPHC expertise in cutting edge CMOS Pixel Sensors technology
 - IPHC: focused on sensor design, acquired knowledge of full system design guided by LBNL

Conclusion (2)

- STAR PXL sensors benefited from synergy among experiments also requiring CPS development at IPHC
 - 🗞 Common submissions, human resources, budget

- From STAR PXL (0.15 m^2) \rightarrow ALICE-ITS (10 m^2)
 - Solution Tight schedule (2016 production) achievable thanks to accumulated knowledge on design and characterization of previous sensors

CPIX14 15-17 September 2014, University of Bonn

Back-up slides

STAR Heavy Flavor Tracker (HFT) Upgrade

 Identification of mid rapidity Charm and Beauty mesons and baryons through direct reconstruction and measurement of the displaced vertex with excellent pointing resolution

TPC – Time Projection Chamber (main tracking detector in STAR)

<u>HFT – Heavy Flavor Tracker</u>

- SSD Silicon Strip Detector
- IST Inner Silicon Tracker
- PXL Pixel Detector (PIXEL)

We track inward from the TPC with graded resolution:

CPIX14 15-17 September 2014, University of Bonn

Distance of Closest Approach = DCA

<u>Au + Au @ 200 GeV</u>

Starting point: Ultimate chip in STAR

