WIMP dark matter at 100 TeV

Lian-Tao Wang University of Chicago

March 24, 2014

We have solid evidence for dark matter:

- We know very little. Vast range of possibilities

- We know very little. Vast range of possibilities
- Looking for a compelling story.
 - Not so different from the particles we know
 - □ Weak scale mass, couplings not too large or small
 - \Box Measure the properties in the lab.
 - Not so dependent on the history of the early universe.
 - \Box Because we don't know too much about it.
 - \Box Idea: thermal equilibrium in early universe.

- We know very little. Vast range of possibilities
- Looking for a compelling story.
 - Not so different from the particles we know
 - □ Weak scale mass, couplings not too large or small

 \Box Measure the properties in the lab.

- Not so dependent on the history of the early universe.
 - \Box Because we don't know too much about it.
 - □ Idea: thermal equilibrium in early universe.

WIMP

WIMP miracle

- If
$$g_D \sim 0.1 \; M_D \sim 10 s \; \text{GeV}$$
 - TeV

▶ We get the right relic abundance of dark matter.

- Major hint for weak scale new physics!

WIMP miracle

- More precisely, to get the correct relic abundance

$$M_{\rm WIMP} \le 1.8 \,\,{\rm TeV} \,\,\left(\frac{g^2}{0.3}\right)$$

- Much of the parameter space out of reach for the LHC.

WIMP miracle

- More precisely, to get the correct relic abundance

$$M_{\rm WIMP} \le 1.8 \,\,{\rm TeV} \,\,\left(\frac{g^2}{0.3}\right)$$

Much of the parameter space out of reach for the LHC.
 Will use 100 TeV for comparison here.

Monday, March 24, 14

"standard" story.

- WIMP is part of a complete model at weak scale.
- It's produced as part of the NP signal, shows up as missing energy.
 - Dominated by colored NP particle production: eg. gluino.
- The reach is correlated with the rest of the particle spectrum.

"standard" story.

- WIMP is part of a complete model at weak scale.
- It's produced as part of the NP signal, shows up as missing energy.
 - Dominated by colored NP particle production: eg. gluino.
- The reach is correlated with the rest of the particle spectrum.

"standard" story.

Of course, still plausible at the LHC, will keep looking. Higher energy \Rightarrow higher reach

Higher energy

Back to the basics

- pair production + additional radiation.

- Mono-jet, mono-photon, mono-...
- Have become "Standard" LHC searches.

In general

LHC	VLHC 100 TeV	Lepton collider
M _{DM} ~10 ² s GeV	M _{DM} ~TeV	M _{DM} ~ 0.5 E _{cm} Spin, coupling Is it WIMP?

Focusing on simplified SUSY

- Not just because we love SUSY.
- SUSY LSP \Rightarrow a set of good examples of more generic WIMP candidates.
 - ▶ Bino ⇔ singlet fermion dark matter
 - Higgsino \Leftrightarrow Doublet. Heavy exotic lepton.
 - $\blacksquare Wino \Leftrightarrow EW Triplet DM$
 - Can have co-annihilation regions

Focusing on simplified SUSY

- Not just because we love SUSY.
- SUSY LSP \Rightarrow a set of good examples of more generic WIMP candidates.
 - ▶ Bino ⇔ sirglet fermion dark matter
 - Higgsino Doublet. Heavy exotic lepton.
 - ▶ Wino \Leftrightarrow EW Triplet DM
 - Can have co-annihilation regions

Good starting point to investigate more general WIMP candidates

Possible scenarios (not over-closing)

- Higgsino ≤ TeV
- Wino \lesssim 3 TeV
- Well temper:

 $\tilde{h}, \ \tilde{W}$ $\Delta M \sim \text{several } \% \times M_{\text{DM}}$ Arkani-Hamed, Delgado, Giudice, hep-ph/0601041

- $ilde{ au}, \ ilde{q}, \ ilde{t},.$ - Coannihilation: $\Delta M \sim \text{several } \% \times M_{\text{DM}}$ \tilde{R}
- Funnel: $2 M_{DM} \approx M_X X = A, H...$

Cahill-Rowley, Hewett, Ismail, Peskin, Rizzo, 1305.2419 Cohen, Wacker, 1305.2914

Possible scenarios (not over-closing)

- Funnel: $2 M_{DM} \approx M_X X = A, H...$

Cahill-Rowley, Hewett, Ismail, Peskin, Rizzo, 1305.2419 Cohen, Wacker, 1305.2914

Wednesday, February 19, 14

14 vs 100 TeV

- Higher energy, higher rates
- Expecting large improvement from 14 to 100.

Wino: Monojet channel Matthew Low, LTW, in prep

Band: varying systematic error of background, λ , between 1-2%

- A factor of 4-5 enhancement from 14 to 100 TeV.

Recent works on mono-jet for electroweak-inos Schwaller, Zurita, 1312.7350 Baer, Tata, 1401.1162 Han, Kribs, Martin, Menon, 1401.1235

Wino, interplay with indirect detection

See also Fan, Reece, 1307.4400

Large uncertainties, however.

Wino decay

Gherghetta, Giudice and Wells, hep-ph/9904378

 $\Delta m_{\widetilde{\chi}_1}$ (GeV) Chen, Drees and Gunion, hep-ph/9902309

– Main decay mode $\chi^{\pm} \rightarrow \pi^{\pm}$ + χ^0

- Charge track \approx 10(s) cm

Wino decay

- Main decay mode $\chi^{\pm} \rightarrow \pi^{\pm}$ + χ^0
- Charge track \approx 10(s) cm

- Essentially free of physics background.
- Dominated by p_T mis-measured tracks.
- Promising reach, much better than mono-jet

(Rough) Extrapolation from ATLAS search

- Scale the ATLAS background rates according to hard jet + MET rates.
- Band: varying background estimate by 5 either way.

- There is hope to "completely cover" the wino parameter space.

Additional cases

Higgsino

10⁴

Higgsino

Additional cases

Conclusion and outlook

- Covering WIMP parameter space a major motivation for going to higher energies.
- Significant enhancement in reach by going to 100 TeV.
 - ▷ A factor of 4-5 in mono-jet channel
- Wino can be "completely covered".
- Motivation for optimizing detector design
 - Systematics in mono-jet, track-pT measurement...
 - Discrimination against mis-measured tracks
 - How soft can lepton be?

BTW, an implication of r=0.1-0.2.

- High scale inflation.
 - ▷ Vinflation ≈ $(10^{16} \text{ GeV})^4$, $m_{\text{inflaton}} \approx 10^{-6} \text{ M}_{\text{Pl}}$.
 - ▶ High reheating temp. $T_{RH} \approx (\alpha_{eff})^{1/2} 10^{-5} M_{Pl}$.
 - High SUSY breaking scale, heavy superpartners.

- $m_{gravitino} \sim 10 \text{ TeV}$
- In many cases:
 - $m_{squark,slepton.} \sim m_{gravitino}$
- Need go beyond LHC.

Narrowing parameter space.

Cuts, monojet

 $\sqrt{s} = 8$ TeV (CMS analysis)

Jet cuts	Lepton vetoes		$ \not\!\!\!E_T \text{ cuts} $
$p_T(1) > 110 \text{ GeV}$	$p_T(e) > 10 { m GeV}$ and	$ \eta(e) < 2.5$	$\not\!\!\!E_T>250~{\rm GeV}$
$ \eta(1) < 2.4$	$p_T(\mu) > 10~{ m GeV}$ and	$ \eta(\mu) < 2.1$	$\not\!\!\!E_T>300~{\rm GeV}$
$p_T(2) > 30 \text{ GeV}$	$p_T(au) > 20~{ m GeV}$ and	$ \eta(\tau) < 2.3$	$\not\!\!\!E_T>350~{\rm GeV}$
$ \eta(2) < 4.5$			$\not\!\!\!E_T > 400~{\rm GeV}$
$n_{\rm jet} \le 2$			$\not\!\!\!E_T > 450~{\rm GeV}$
$\Delta\phi(1,2) < 2.5$			$E_T > 500 \text{ GeV}$
			$E_T > 550 \text{ GeV}$

 $\sqrt{s} = 14 \text{ TeV}$

Jet cuts	Lepton vetoes		E_T cuts
$p_T(1) > 300 \text{ GeV}$	$p_T(e) > 20 { m GeV}$ and	$ \eta(e) < 2.5$	$E_T > 300 \text{ GeV}$
$ \eta(1) < 2.4$	$p_T(\mu)>20~{ m GeV}$ and	$ \eta(\mu) < 2.1$	$\not\!\!\!E_T>350~{\rm GeV}$
$p_T(2) > 60 \text{ GeV}$	$p_T(au) > 20~{ m GeV}$ and	$ \eta(\tau) < 2.3$	$\not\!\!\!E_T > 400~{\rm GeV}$
$ \eta(2) < 4.5$			$\not\!\!\!E_T > 450~{\rm GeV}$
$n_{ m jet} \le 2$			$\not\!\!\!E_T > 500~{\rm GeV}$
$\Delta\phi(1,2) < 2.5$			$\not\!\!\!E_T > 550~{\rm GeV}$
			$\not\!\!\!E_T > 600~{\rm GeV}$
			$\not\!\!\!E_T > 650~{\rm GeV}$
			$\not\!\!\!E_T > 700~{\rm GeV}$
			$\not\!\!\!E_T > 750~{\rm GeV}$
			$E_T > 1000 \text{ GeV}$

Cuts, monojet

	$\sqrt{s} = 100$ Te	; v	
Jet cuts	Lepton vetoes		$ \not\!$
$p_T(1) > 1200 \text{ GeV}$	$p_T(e) > 20 { m GeV}$ and	$ \eta(e) < 2.5$	$\not\!$
$ \eta(1) < 2.4$	$p_T(\mu)>20~{ m GeV}$ and	$ \eta(\mu) < 2.1$	$\not\!\!\!E_T > 1800~{\rm GeV}$
$p_T(2) > 200 \text{ GeV}$	$p_T(au) > 40~{ m GeV}$ and	$ \eta(\tau) < 2.3$	$\not\!\!\!E_T>2000~{\rm GeV}$
$ \eta(2) < 4.5$			$\not\!\!\!E_T>2200~{\rm GeV}$
$n_{\rm jet} \le 2$			$\not\!\!\!E_T>2400~{\rm GeV}$
$\Delta\phi(1,2) < 2.5$			$\not\!\!\!E_T>2600~{\rm GeV}$
			$\not\!\!\!E_T>2800~{\rm GeV}$
			$\not\!\!\!E_T > 3000~{\rm GeV}$
			$\not\!\!\!E_T>3200~{\rm GeV}$
			$\not\!\!\!E_T>3400~{\rm GeV}$
			$\not\!\!\!E_T > 5000~{\rm GeV}$

 $\sqrt{s} = 100 \text{ TeV}$

Cuts, soft lepton

 $\sqrt{s} = 8 \text{ TeV}$

Jet cuts	Lepton bins	
$p_T(1) > 110 \text{ GeV}$	0-bin: $p_T(e) > 10 \text{ GeV}$ and $ \eta(e) < 2.5$	$E_T > 250 \text{ GeV}$
$ \eta(1) < 2.4$	1,2-bin: $50 > p_T(e) > 10 \text{ GeV}$ and $ \eta(e) < 2.5$	$\not\!\!\!E_T > 300~{\rm GeV}$
$p_T(2) > 30 \text{ GeV}$	0-bin: $p_T(\mu) > 10 { m GeV}$ and $ \eta(\mu) < 2.1$	$E_T > 350 \text{ GeV}$
$ \eta(2) < 4.5$	1,2-bin: $50 > p_T(\mu) > 10 \text{ GeV}$ and $ \eta(\mu) < 2.1$	$\not\!\!\!E_T > 400~{\rm GeV}$
$n_{\rm jet} \le 2$	0-bin: $p_T(au) > 20 { m GeV}$ and $ \eta(au) < 2.3$	$\not\!\!\!E_T > 450~{\rm GeV}$
$\Delta\phi(1,2) < 2.5$		$\not\!\!\!E_T > 500~{\rm GeV}$
		$E_T > 550 \text{ GeV}$

 $\sqrt{s} = 14 \text{ TeV}$

Jet cuts	Lepton bins	$ E_T \text{ cuts} $
$p_T(1) > 300 \text{ GeV}$	0-bin: $p_T(e) > 20 \text{ GeV}$ and $ \eta(e) < 2.5$	$\not\!\!\!E_T > 300~{\rm GeV}$
$ \eta(1) < 2.4$	1,2-bin: $50 > p_T(e) > 20 \text{ GeV}$ and $ \eta(e) < 2.5$	$\not\!\!\!E_T>350~{\rm GeV}$
$p_T(2) > 60 \text{ GeV}$	0-bin: $p_T(\mu) > 20~{ m GeV}$ and $ \eta(\mu) < 2.1$	$\not\!\!\!E_T > 400~{\rm GeV}$
$ \eta(2) < 4.5$	1,2-bin: $50 > p_T(\mu) > 20 \text{ GeV}$ and $ \eta(\mu) < 2.1$	$\not\!\!\!E_T > 450~{\rm GeV}$
$n_{\rm jet} \le 2$	0-bin: $p_T(au) > 30~{ m GeV}$ and $ \eta(au) < 2.3$	$\not\!\!\!E_T > 500~{\rm GeV}$
$\Delta\phi(1,2) < 2.5$		$\not\!\!\!E_T > 550~{\rm GeV}$
		$\not\!\!\!E_T > 600~{\rm GeV}$
		$\not\!\!\!E_T > 650~{\rm GeV}$
		$\not\!\!\!E_T > 700~{\rm GeV}$
		$\not\!\!\!E_T > 750~{\rm GeV}$
		$\not\!\!\!E_T > 1000~{\rm GeV}$

Cuts, soft lepton

Lepton bins $\not\!\!\!E_T$ cuts Jet cuts $p_T(1) > 1200 \text{ GeV}$ $\not\!\!\!E_T > 1000 \text{ GeV}$ 0-bin: $p_T(e) > 20$ GeV and $|\eta(e)| < 2.5$ 1, 2-bin: $40 > p_T(e) > 20 \text{ GeV}$ and $|\eta(e)| < 2.5$ $\not\!\!\!E_T > 2000 \text{ GeV}$ $|\eta(1)| < 2.4$ $p_T(2) > 200 \text{ GeV}$ 0-bin: $p_T(\mu) > 20 \text{ GeV}$ and $|\eta(\mu)| < 2.1$ $|\eta(2)| < 4.5$ $n_{\rm jet} \leq 2$ 0-bin: $p_T(\tau) > 40 \text{ GeV}$ and $|\eta(\tau)| < 2.3$ $E_T > 3000 \text{ GeV}$ $\Delta\phi(1,2) < 2.5$ $\not\!\!\!E_T > 3250 \text{ GeV}$ $E_T > 3500 \text{ GeV}$ 10 GeV < pT lepton < 30 GeV $_T$ > 3750 GeV $\not\!\!\!E_T > 4000 \text{ GeV}$ $E_T > 5000 \text{ GeV}$

 $\sqrt{s} = 100 \text{ TeV}$

- Dominated by systematical error of background.
- simple scaling with luminosity gives .5% (even remotely realistic?)
- Useful to keep in mind in designing detectors.

Disappearing track + background

Figure from ATLAS disappearing track search twiki