Beauty Quark Lifetime

Julia Cline and Kirby Hermansen

LHCb

LHCb's main goals

How does the LHCb work?

Craftily

Rather than use the brute force method of ATLAS and CMS, it looks for tiny modifications in known particle decays. These modifications could be evidence of new particles.

- 40 million collisions per second (for 2 years)
- Few collisions create pairs of beauty particles
- Beauty particles fly a few inches and then decay into other particles
- Measuring the lifetime of beauty particles is important for physics beyond the standard model

Why lifetimes?

- w ~80 GeV (virtual particle, Bs only has a mass of 5.3 GeV)
- w' could be any mass!
- Above model only accounts for weak interactions, strong interactions also take place, with infinite possibilities.
- Thus the decay rate is very difficult to measure.
- Lifetimes are helpful to measure the rate->New Physics???

Decay

Neutrinos:
The
Problem
Particles

Lifetime Ratios

We measure the ratio of observed lifetimes of similar decay channels:

$$B^{0} \to D^{-}(\to K^{+}K^{+}\pi^{-})\mu^{+}\nu$$

 $B^{0}_{s} \to D^{-}_{s}(\to K^{+}K^{+}\pi^{-})\mu^{+}\nu$

In the ratio, the effect of the neutrino's momentum approximately "cancels."

But $B^0 \neq B_s^0$!

This is where our projects come into play.

Weighting

Detector Acceptance

Rate is important, so we want to see if there is a difference in how B^0 and B_s^0 are detected.

References

- Slide 1: LHCb icon http://lhcb-public.web.cern.ch/lhcb-public/en/lhcb-outreach/multimedia/
- Slide 2: LHCb cavity http://cds.cern.ch/record/1090809/files/bul-pho-2008-019.jpg
- Slide 3: book http://frrl.files.wordpress.com/2013/02/logo_books.jpg
- Slide 4: fox http://parentpreviews.com/legacy-pics/fantastic_mr_fox.jpg
- Slide 5: LHC arial http://www.scifun.ed.ac.
 uk/pages/pp4ss/images/Exhibits/LHC-sim.jpg
- Slide 8: cat http://cheezburger.com/5810047744
- Slide 14: bottom quark http://www.particlezoo.net/individual_pages/shop_bottomquark.html

The End

(Brought to you by the bottom quark)

