Optical Pumping Simulation of Copper for Beta-NMR Experiment

Julie Hammond
Boston University
ISOLDE, CERN
24.3.14

ISOLDE

NMR (continued)

- Beta-NMR
 - Requires less atoms.
 - ▶ 10 orders of magnitude better precision than traditional NMR.
 - Uses radioactive isotopes.

NMR (nuclear magnetic resonance)

- A sample is wrapped in two solenoids between two strong magnets. One solenoid is pulsed with a signal corresponding to the Larmor frequency, and the other solenoid is attached to an oscilloscope which measures the response frequency of the sample.
 - Larmor frequency is the resonant frequency. $(\omega_{Larmor} = \frac{egB}{2m})$, where e is the charge of an electron, g is the gyromagnetic ratio, B is the magnitude of the applied magnetic field, and m is the mass of the particle.)
 - This response frequency is then Fourier transformed to show the various resonances which correspond to the electrons' spin.

Purpose of Magnets

Presence of magnetic field gives rise to energy splitting between the states. A weak magnetic field (0.1 T) gives rise to the Zeeman effect, which splits according to the nuclear spin. A stronger magnetic field (0.2 T) gives rise to the Paschen-Back effect, which splits according to the electronic angular

momentum.

Polarizing the Valence Electrons

- A laser whose frequency matches the energy difference between the electron orbitals is used to bump the electrons into the more energetic orbitals.
 - ▶ At ISOLDE, dye lasers are used, whose frequency is variable.
 - Polarization comes from the spin of the photon which, as bosons, have spin-1, as opposed to fermions who have spin-1/2.
 - Can be done using positively polarized light $(+\sigma)$, negatively circularly polarized light $(-\sigma)$, or linear polarized light (0) (a superposition of the two circular polarizations).
 - ► Selection rules: $\Delta l = +/-1$.

Optical Pumping

Simulating Optical Pumping in C

- The rate of the change in each population corresponds to a differential equation which is dependent on the current population as well as the populations of the other states.
- ► These differential equations are coupled and are approximated by the Runge-Kutta method.
- Using a computer simulation will give us better accuracy, as the number of repetitions may be very large as the increment is very small.

What I'm Doing

- Getting my computer to recognize the IT++ library.
- Learning energy splitting diagrams to find the possible energy transitions in copper.
 - Calculating nuclear spin.
- Finding the constants to put into the differential equations:
 - Einstein emission and absorption coefficients
 - ▶ Using the Heisenberg Uncertainty Principle to calculate the lifetimes of the different states. ($\Delta E \Delta t >= h/4\pi$)
 - Larmor frequency.
 - Coding this in C to run the approximation.