

OLAV IV

LHC insulation vacuum system: consolidation activities and leaks followup during the first LHC long shutdown

Jaime Perez Espinos on behalf of all contributors to LHC insulation vacuum (TE/VSC, AL4030 and ICIT)

Vacuum, Surfaces & Coatings Group Technology Department

Contents

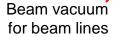
- Introduction to LS1
- LS1 activities for insulation vacuum (IV)
- LHC insulation vacuum system overview
- Leak test support
- Insulation Vacuum (IV) consolidation
- 'Cold' Beam Vacuum (BV) consolidation
- Status and follow-up of leaks
- Examples of leaks (LS1)
 - Summary

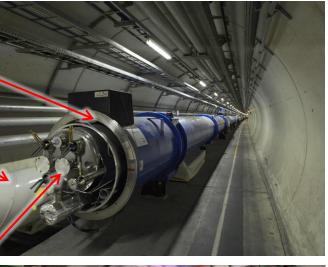
Introduction to LS1

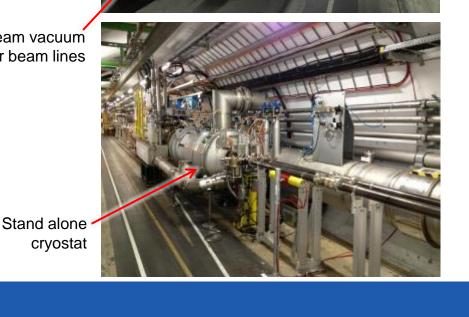
- LS1: ~ 2 year-break from operation
- Main priorities of LS1 for LHC:
 - Activities linked to incident Sept. 2008:
 - <u>Consolidation of 13 kA supeconducting</u> <u>splices and repair of defectuous</u> <u>interconnects (powering at 7 TeV)</u>
 - Installation of remaining pressure relief devices DN200
 - Bring all necessary equipment up to the level needed for 7TeV/beam
 - Repair of He leaks
 - Others (related to IV):
 - IV and 'cold' BV consolidation
 - Maintenance

LS1 activities for IV

LEAK TEST (1) >80K; (2) 5 bar VENT //	Leak test support	Splice consolidation Special interventions DFBA	Cryomagnets, connection cryostats, diodes, Y lines, triplet braids Splices and flexibles		→ LT (PRESS. TEST)
	IV consolidation	Localisation of <u>known</u> leaks			
		Final safety valve configuration	Flap valves and spring loaded valves		N
		Improvements	New by-passes, turbos, p/o ports		PUMP
		Maintenance	Pumps, O-ring exchange		₽.
	'Cold' BV consolidation	PIMs		BV	
VENT <i>BV</i> RF BALL		New protection devices	Protective shells; rupture disks and non-return valves	ంర	
		Interconnection QC	Integrity of bellows	PUMP	

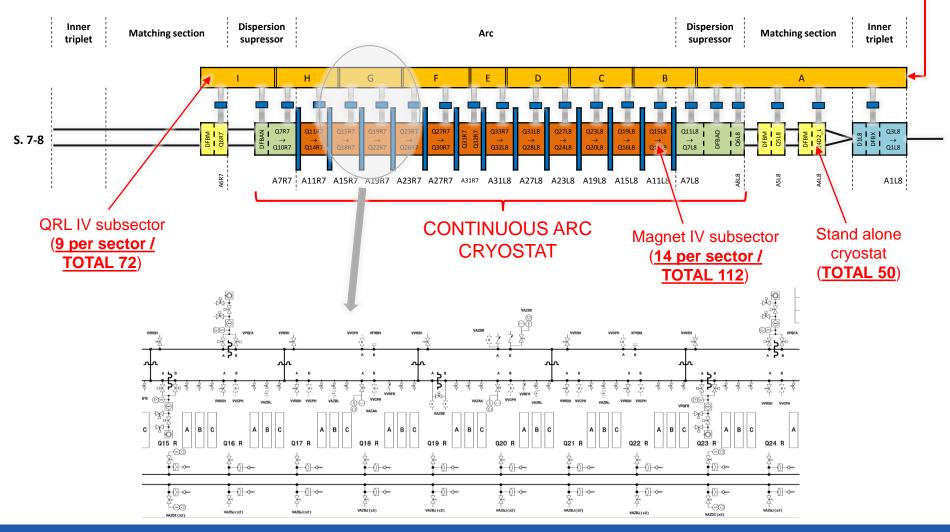



LHC IV system overview


Characteristic	Quantity for LHC machine & distribution line (QRL)
Insulation vacuum system length	22,4 km & 25 km
Welds	~ 250 000 (90 000 in-situ)
Weld length	~ 100 000 m
Elastomer joints	~ 18000
Elastomer joint length	~ 22 000 m
Multi-layer insulation	~ 9 000 000 m ² or 200 m ² /m of cryostat
Vacuum subsectors	234
Vacuum subsector length	214 m (machine) & 428 m (QRL)
Vacuum subsector volume	~ 80 m ³
Fixed turbo pumps	178
Nominal turbo pumping speed	0,25 l/s/m of cryostat
Fixed vacuum gauges	974
Mobile turbo pumping groups	36
Mobile primary pumping groups	36

Insulation vacuum for the magnet cryostats

Insulation vacuum for the cryogenic distribution line

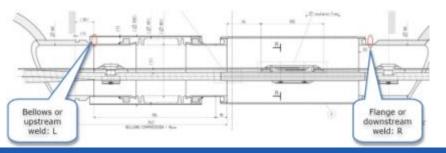


LHC IV system overview

QRL (cryogenic distribution line)

Vacuum, Surfaces & Coatings Group Technology Department

Leak test support

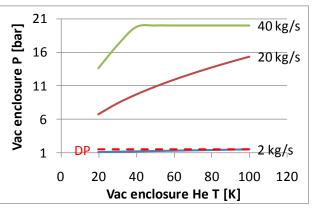

Activity	Concept	Number of welds	Leak tests foreseen	Leak tests done	Leaks found	% leaks LS1	% leaks install.
Splice consolidation	M test	~11000	~5100	~3600	14	0.18	0.24
	W test		~1700	~800	15	1.75	2.4
DN200		~600	~600	~330	4	1.2	

Vacuum, Surfaces & Coatings Group Technology Department

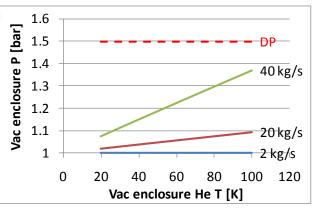
Leak test support

Activity	Leak tests foreseen for LS1	Leak tests foreseen and done in LS1	Leak tests <u>not</u> planned	Leaks found	% leaks LS1
Special interventions	~610	~500	~200 SO FAR	8	1.1 %
DFBAs	~320	~500	-	4	0.8 %

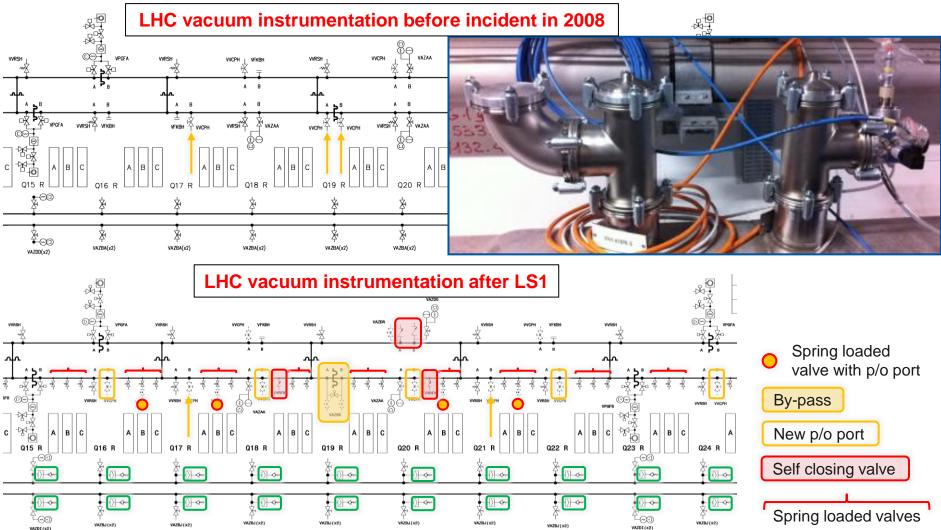
 Many different tools for many different positions to leak test



Vacuum, Surfaces & Coatings Group Technology Department


IV consolidation

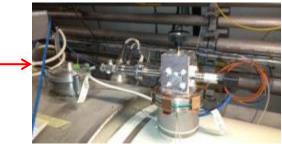
- Improvements
 - Redundancy in configuration
 - Add simple by-passes (already included in 5 arcs)
 - Foresee 16 additional turbos at QRL extremities
 - Flexibility in configuration by means of new p/o ports
 - Leak test pre-localisation method
 - Chance of backup pumping through mobile groups
- Safety valve configuration \rightarrow <u>New protection</u> scheme based on redefinition of MCI
 - MCI with magnets at nominal current and breach opening of 120 cm2 \Rightarrow max. flow of 30 Kg/s at 90K
 - Protection of the LHC insulation vacuum enclosure
 - MCI with access authorization of personnel (powering phase I) \Rightarrow max. flow of 1 Kg/s at 90K
 - Protection of the LHC insulation vacuum enclosure
 - Protection of personnel against 'He jam':
 - Avoid multiple He jams \Rightarrow 1 valve without spring per vac. subsector
 - Location of valve: as far as possible from potential intervention areas
 - Limit zones with relief points


Protection on consolidated subsectors: 12 DN200, 2 DN90

⁽DP: Design Pressure)

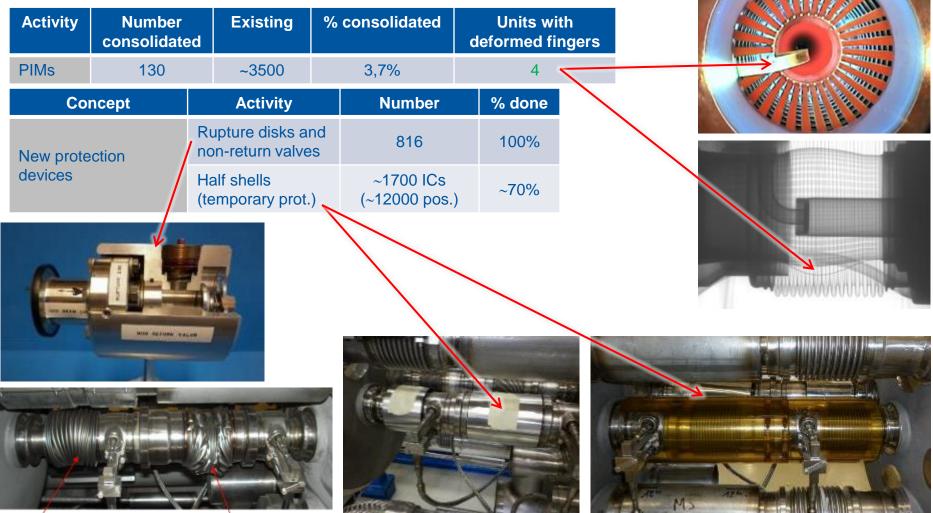
IV consolidation

Vacuum, Surfaces & Coatings Group Technology Department


IV consolidation

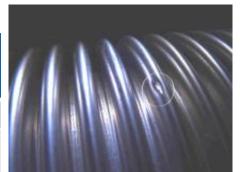
Activity	Concept	New	Existing	% Done
	Turbos	16	178	100% -
Improvements	By-passes	21	35	100%
	P/o ports	~400	~400	100%
	Flap valves DN200	120	-	95%
	Flap valves DN160	27	-	100%
Safety valve	Gravity loaded valves DN90	144	-	100%
configuration	SV with spring DN200	~620	~800	90%
	SV with spring DN160	6	67	100%
	SV with spring DN100	4	19	100%
	Reclamping	~700	-	100%

% Activity **Existing** Item Intervened Done Seals DN100 ~1200 ~3500 (control) 85% O-ring replacement Seals DN63 ~200 ~800 (control) 95% Turbo 130 178 75% Maintenance (fix groups) 42 (foreseen) Prim. pump 178 95%



'Cold' BV consolidation

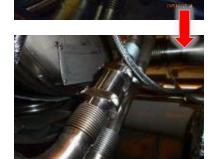
P_{cr}~ 3.5 bar



Vacuum, Surfaces & Coatings Group Technology Department

'Cold' BV consolidation

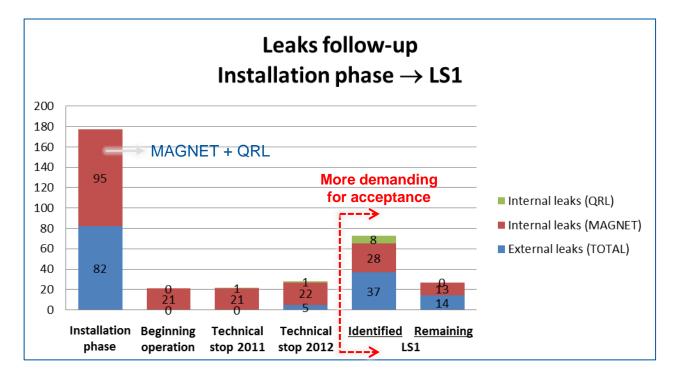
Concept	Activity	Bellows with shocks present during LS1	Consolidated during LS1 due to shock	% consolidated over bellows with shocks
Interconnection	PIM bellows	118	21	17,8 %
QC	Beam screen bellows	69	3	4.3 %


(*) NOTE: quality controls also include other components

Bellows replaced

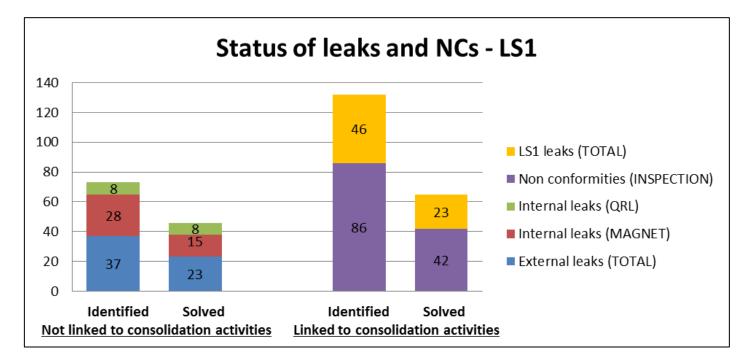
(flexibles, tubes, etc.)

86 NCs opened after inspection in 7out of 8 sectors

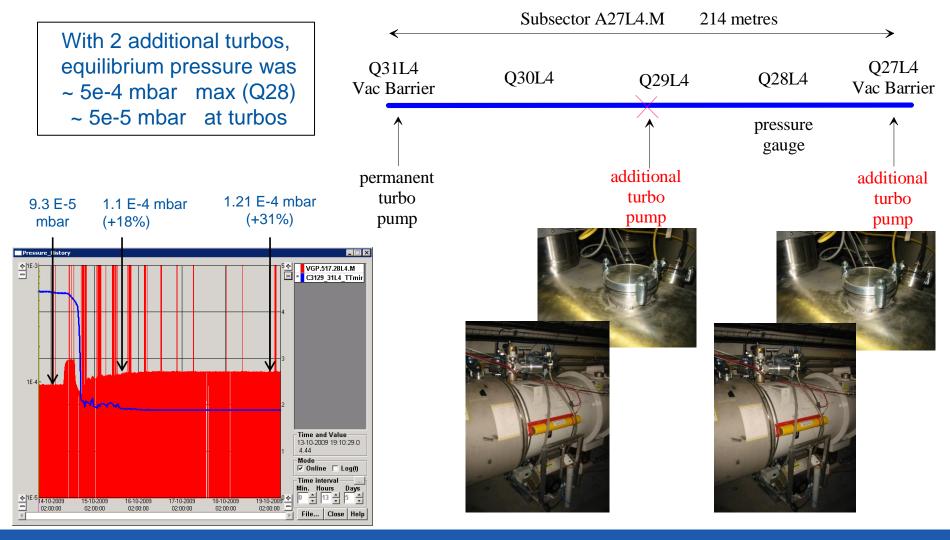


Convolution blocked – bellows not replaced

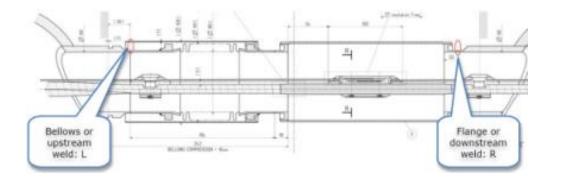
Vacuum, Surfaces & Coatings Group Technology Department


Leaks follow-up

- LS1 leaks identified before start of consolidation activities, and therefore, not linked to them
- Acceptable leak levels during LS1 more demanding than during installation phase


Status of leaks

Leak tests linked to consolidation activities have been done for **6** out 8 sectors Inspection procedures linked to consolidation activities have been done for **7** out of 8 sectors


Known leak: s. 3-4

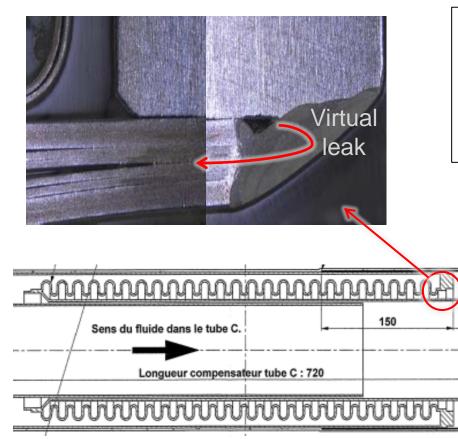
Vacuum, Surfaces & Coatings Group Technology Department

Known leak: s. 3-4

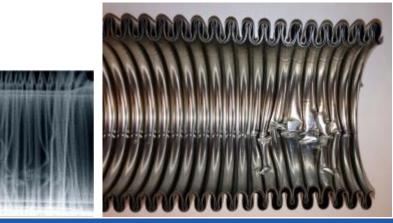
Error in strategy and Quality Control!!!

Leak location (inner surface; before cutting)

Details: crack, lack of fusion, segregation, cold drops


Detail inner surface: Porosity

Vacuum, Surfaces & Coatings Group Technology Department


Known leak: s. 4-5

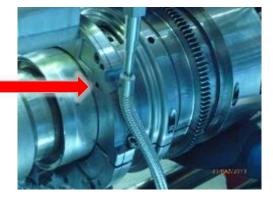
QRL, lines C & D (internal leak)

Failure process: filling of the inter-layer space with time (3-4 years of operation) \Rightarrow Pressure increase of the inter-layer space during warm-up leading to the compensator collapse

Compensator damaged: DN100 multiply (4 plies of 0.3 mm)

Leaks during LS1: example #1

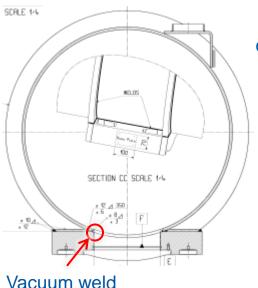
k flexibles (internal leak)



SHOCK

FATIGUE CRACK

k flexibles exposed to <u>mechanical activities</u> in interconnections ⇒ need for improvement of mechanical interventions and quality control?



Vacuum, Surfaces & Coatings Group Technology Department

Leaks during LS1: example #2

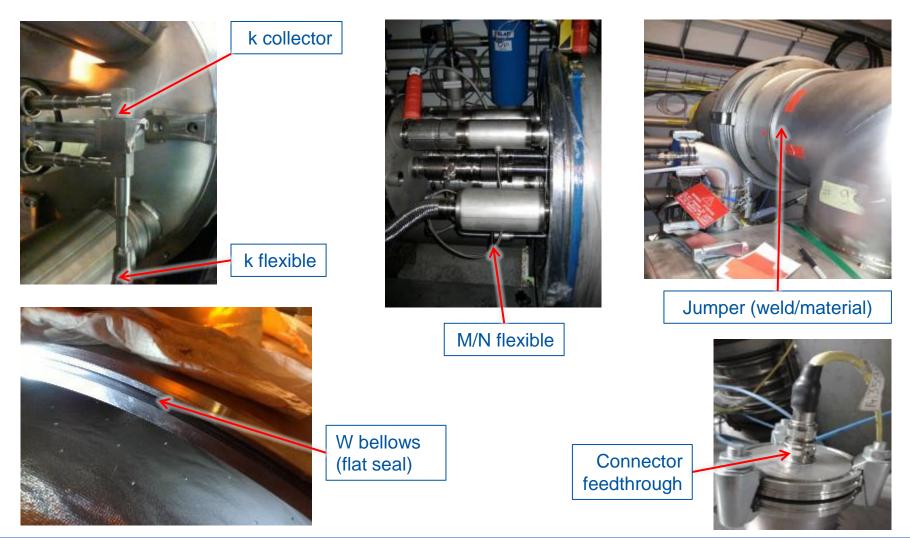
Leaks on feet (external leak; 2 types)

Type 1: continuous weld

Type 2: <u>non</u> continuous weld

Pump-out of volume in-between

Vacuum, Surfaces & Coatings Group Technology Department

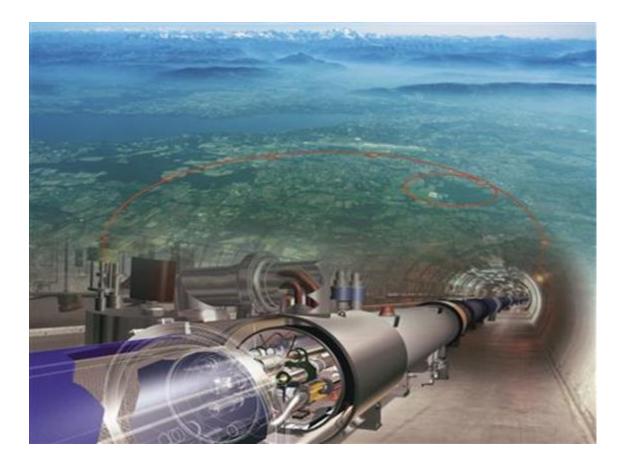

No accessibility to vacuum

weld \Rightarrow pump-out or isolate

space between enclosure

and support structure

Other leaks


Vacuum, Surfaces & Coatings Group Technology Department

Summary

- Consolidation activites are ongoing and with good timing
- Quality of final product has improved and leaks decreased
- Right leak test methodology has led to identification of all leaks; many of them already solved
- LS1 is allowing to deepen in machine knowledge and leak types

Thanks...

Vacuum, Surfaces & Coatings Group Technology Department