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Abstract Abstract for BOOST2013 report

Keywords boosted objects · jet substructure ·
beyond-the-Standard-Model physics searches · Large

Hadron Collider

1 Introduction

Jet substructure has been around a while now, and it’s

time to study the correlations between the plethora of

observables that have been developed and used. Previ-

ous BOOST reports [1,2,3] studied some of these things.

2 Monte Carlo Samples

Give details about how the samples we use have been

generated.

3 Jet Algorithms and Grooming Approaches

Describe the jet algorithms and grooming approaches

that we will use in the report. Give the nomenclature

that we will use to refer to e.g. the groomed mass in

the rest of the report.

4 Substructure Variables/Taggers

Describe the specific substructure variables and tag-

ging approaches that we will be using in this report

e.g. n-subjettiness, Q-jets, HTT, JH tagger. Give the

nomenclature that we will use to refer to these vari-
ables/taggers in the rest of the report.

5 Boosted W -Tagging

In this section we study the performance of various jet

algorithms in combination with jet substructure vari-

ables/taggers in terms of the identification of a boosted

hadronically decaying W signal. For each jet algorithm

we produce Receiver Operating Characteristic (ROC)

curves that elucidate the performance of various vari-

ables that are capable of providing discrimination be-

tween a hadronic W signal and a QCD jet. These vari-

ables are then combined in a Boosted Decision Tree

(BDT) and the performance of the resulting BDT dis-

criminant explored through ROC curves to understand

the degree to which variables are correlated and exploit-

ing the same information. These studies are repeated in

different kinematic regimes, to explore both the perfor-

mance and correlations as a function of the jet boost,

and where substructure approaches may break down.

5.1 Methodology

These studies use the X →WW samples as signal and

the XXX samples to model the QCD background.

Jets are reconstructed using the XXX jet algorithms

described in the previous section. The following event

selection is then applied to these samples....(presumably

this will vary depending on which kinematic bin is used,

as will the actual samples used - maybe summarize in

a table).

Show some basic distributions of the background

versus signal - groomed jet pT, groomed jet mass for

the different algorithms. Figure 1 shows these basic

distributions. Do we want to reweight signal kinemat-

ics to background or vice versa? Do we want to study

quarks/gluons separately?

Go on to explain how we produce the ROC curves.

5.2 Performance at Moderate Boosts

(this section is to cover the W -tagging performance for

jet pT 200-300 GeV and 500-600 GeV using
√
s = 8

TeV samples)

5.2.1 Single Variable Performance

Show plots of signal versus background for all single

variables investigated.

Figure 2 shows the single variable ROC curves in

the pT 500 GeV bin for the anti-kT R=0.8 algorithm,

compared to the ROC curve for a BDT combination of

all the variables. One can see that the best performant

single variables for a reasonable signal efficiency are the

groomed/filtered masses, which all have a similar level

of performance with the exception of the soft drop mass

with β = −1. Would be good to split this into two plots,

one using the masses and one for other variables, or

somehow make the mass and other variable curves more

distinct from one another by using same colour for all

the mass curves.

We want to look also at:

– Dependence on R. So have the same single variable

ROC for e.g. R=1.2, R=0.4. Then possibly have an-

other plot which compares the best single variable

(e.g. groomed mass) for different R.

– Dependence on pT. Again want to repeat the plot for

different kinematic bins, and then have a plot which
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(a) Leading jet pT (b) Sub-leading jet pT

(c) Leading jet η (d) Sub-leading jet η

Fig. 1 The BDT combinations of each mass variable with every other variable considered in the pT 500 GeV bin using the
anti-kT R=0.8 algorithm.

compares the best performance in each kinematic bin

to see the dependence of performance on kinematics.

5.2.2 Combined Performance

Figure 3 shows the BDT combinations of each mass

variable with every other variable considered in the pT
500 GeV bin using the anti-kT R=0.8 algorithm. Can

we drop the combinations of mass + mass from these

plots to make them clearer? Also would be good to put

the single variable mass curve on these plots, so you

can see how much improvement the combination gives,

and the “all variables” curve.

No combination with other variables can recover the

poor performance of the ungroomed mass and the soft

drop mass with β = −1. The other groomed/filtered

masses are all most improved by combination with the

Cβ=1
2 energy correlation function. Show 2-D correlation

plot of Cβ=1
2 vs groomed mass - show that it is largely

uncorrelated. Now show a plot which compares on one

plot the best combined performance for each mass + X.

e.g. mass + Cβ=1
2 , and compared also to the all vari-

ables curve. This plot is just for one R and one kine-

matic bin.

Repeat these studies for different R and different

kinematic bins. Finally make plots which compare best

combined performance for different R and kinematics.

Do we want to look at other combinations of vari-

ables which don’t involve mass? Practically I think we

will always be making mass + X though.
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Fig. 2 The ROC curve for all single variables considered for W tagging in the pT 500 GeV bin using the anti-kT R=0.8
algorithm.

(a) Ungroomed mass + X (b) Trimmed mass + X

(c) Pruned mass + X (d) Soft drop mass (β = −1) +X

(e) Soft drop mass (β = 2) + X (f) mMDT mass + X

Fig. 3 The BDT combinations of each mass variable with every other variable considered in the pT 500 GeV bin using the
anti-kT R=0.8 algorithm.
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5.3 Performance at High Boosts

(this section is to cover the W -tagging performance for

jet pT 1-1.1 TeV and > 1.5 TeV using
√
s = 14 TeV

samples)

Maybe we don’t need to divide into different medium/high

boost sections.

6 Top Tagging

Top tagging studies go here.

7 Quark-Gluon Tagging

q/g tagging studies go here.

8 Summary & Conclusions

This report discussed the correlations between observ-

ables and looked forward to jet substructure at Run II

of the LHC at 14 TeV center-of-mass collisions eneer-

gies.
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