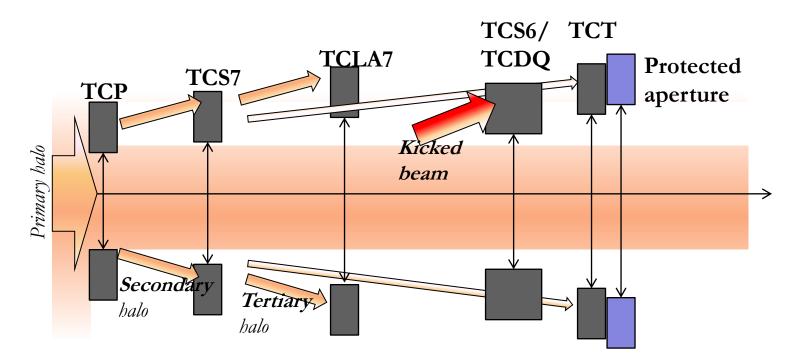


Collimation and B*-reach

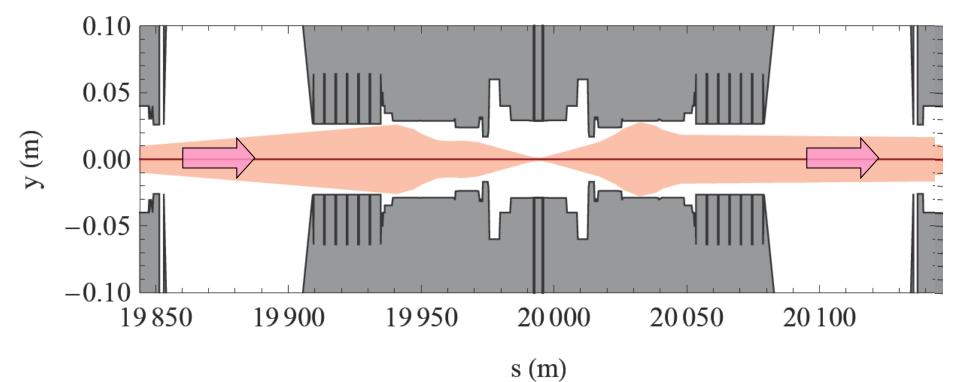
R. Bruce, S. Redaelli, B. Salvachua, G. Valentino

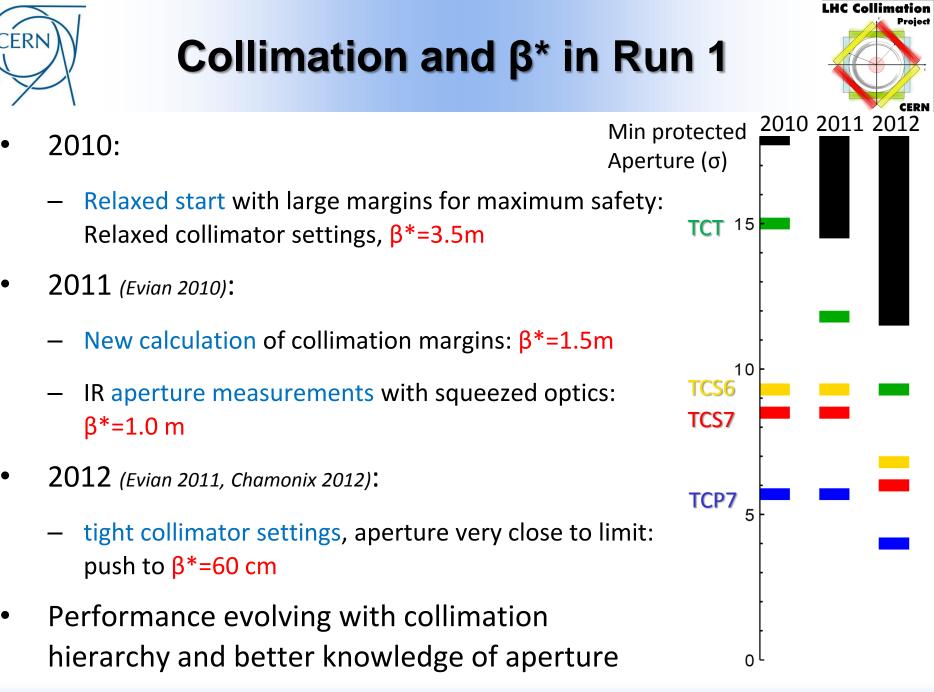
Discussions, essential input: collimation team, G. Arduini, X. Buffat, M. Giovannozzi, S. Fartoukh, V. Kain, E. Metral, N. Mounet, T. Pieloni, R. Tomas, J. Wenninger


- Introduction
 - Importance of collimation for machine performance
 - Brief recap of Run 1
- Outlook for Run 2
 - Startup scenario
 - How can we push the performance?
 - "Ultimate" scenario
- Summary

Influence of collimation on machine performance

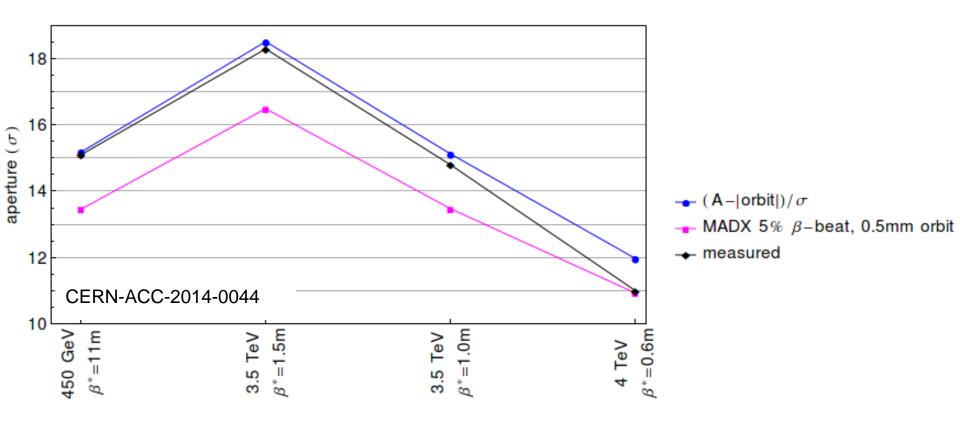
- Collimation influences important parameters
 - Aperture: sets limit for β^* . Main β^* limit in Run 1
 - Cleaning efficiency. Together with lifetime, sets limit for max intensity





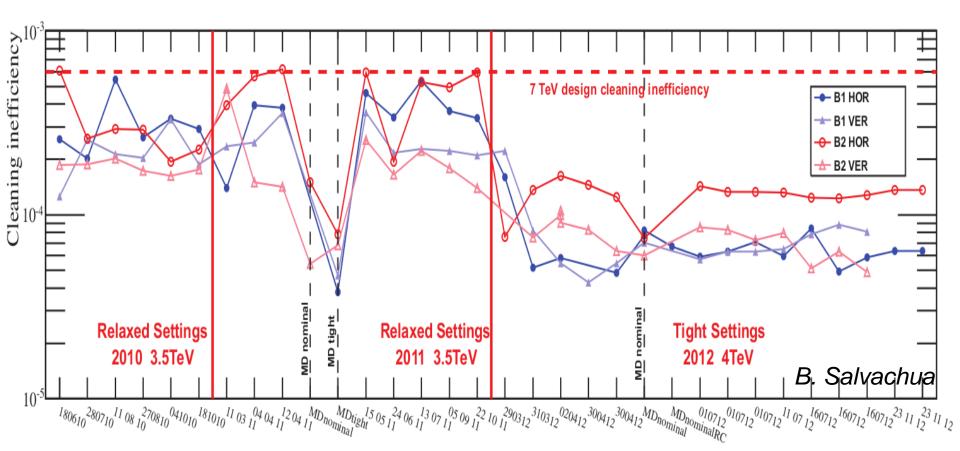
Aperture limit on β*

- Collimation hierarchy determines minimum protected aperture
- As β* is squeezed to achieve a smaller beam size at IP, and higher lumi, beam size increases in triplet => Aperture margin decreases => Limitation on β*


R. Bruce, 2014.06.02

Aperture in Run 1

• Run 1: IR triplet apertures measured with beam on several occasions – close to ideal design value!



Cleaning in Run 1

- Cleaning working very well and good quench performance
 - Collimation was not limiting factor for intensity in Run 1
 - Very stable settings only 1 full alignment per year

$\mathbf{Run}\ \mathbf{1} \rightarrow \mathbf{Run}\ \mathbf{2}$

- Many things changing for Run 2: energy, 25 ns, LS1 activities...
 - See e.g. talk G. Valentino for collimator hardware changes
- Has to be proven with beam that LHC works as well as in Run 1
 - Known: more dangerous beams, lower quench limit
 - Uncertainties: Loss spikes, instabilities,...
- Start carefully...

Philosophy for Run 2

- Startup:
 - Put focus on feasibility, stability and ease of commissioning. Allow comfortable margins for operation and avoid introducing too many untested features at once
 - Where possible, calculate parameters based on what we know can be achieved from Run 1 experience
 - Performance should not be main focus, but we should also not be overly pessimistic

Later in the run

When we know better how the machine behaves at 6.5 TeV thorugh OP experience and MDs, we can push the performance

Beam assumptions for startup

- 6.5 TeV
- Standard 25 ns beam from the injectors. Tolerate/encourage large emittance up to 3.75 um in collision (as in design report)
 - Most beneficial for single-beam stability among available options (see talk N. Mounet)
 - Well-tested in injectors
 - Intensity: up to 1.3e11 p/bunch at injection
 - See later talk H. Bartosik

Collimator settings at 6.5 TeV

Startup

[σ with ε=3.5µm]	Relaxed settings	2012 mm kept	2 σ retraction
TCP IR7	6.7	5.5	5.5
TCSG IR7	9.9	8.0	7.5
TCSG IR6	10.7	9.1	8.3
TCDQ IR6	11.2	9.6	8.8
TCT IR1/5	13.1	11.5	10.7
aperture	14.6	13.4	12.3

Collimator settings at startup

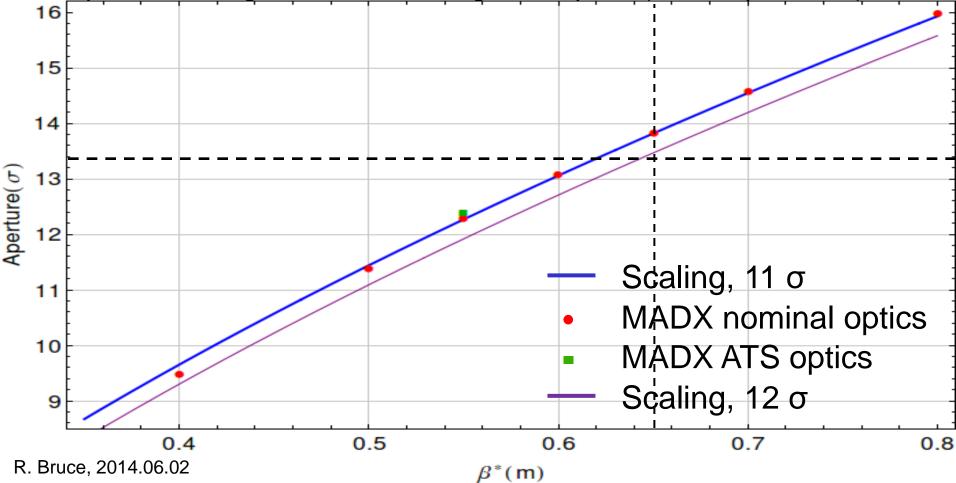
- Proposal: Keep the **2012 collimator settings in mm**
- With large emittance, single beam should be stable with both octupole polarities (impedance covered in talk N. Mounet).
 - If using LOF>0, we could maybe live without collide and squeeze. Maybe even with LOF<0? Octupole strategy: see talk T. Pieloni
- Well proven long-term stability and cleaning in 2012
 - 2012 MDs: Confident we can have same stability for more performing settings (2 sigma retraction), but not justified to increase impedance at startup
- Cleaning predicted to be satisfactory at 6.5 TeV (simulations)
 - Unless very bad surprises with the quench limit, cleaning should not be the limiting factor for intensity in Run 2

R. Bruce, 2014.06.02

Protection of TCTs/aperture

- No beam dump failure in Run 1 with full physics beam.
- Asyncrounous dumps / single module pre-fire more likely at higher energy. Should be prepared!
- With ATS optics, phase advance dump kicker→IR5 TCT close to 90 degrees
 - Ongoing study to quantify expected impacts on TCTs during accident using new simulation tools. Verify if proposed margins are enough!
 - Asynchrounous dump tests are essential part of commissioning
- Note: Underlying assumption that orbit and optics correction are not worse than 2012 for sufficient margins! Check during commissioning

Aperture at 2015 startup


- Machine realigned aperture (hopefully) not worse than 2012
- Use same method for aperture calculation as in 2012
 - Estimated aperture very close to allowed limit as in 2012. No hidden margin!
- Important to measure aperture early on in commissioning, as in 2012, or even earlier (injection). See talk S. Redaelli
- Need crossing angle to calculate aperture at given β*.
 Assume 11 σ beam-beam separation for nominal beam (see talk T. Pieloni)
 - Corresponds to 170 μ rad half angle at β *=55cm
 - If possible, even larger margins could be beneficial for long-range

- Possible configuration: β*=65 cm, 160 µrad, L=0.7e34 cm⁻²s⁻¹
- If more margin needed for long-range/squeeze: could use up aperture margin to increase angle: 170µrad (12 σ separation)

Collimator settings at 6.5 TeV

[σ with ε=3.5µm]	Relaxed settings	2012 mm kept	2σ retraction
TCP IR7	6.7	5.5	5.5
TCSG IR7	9.9	8.0	7.5
TCSG IR6	10.7	9.1	8.3
TCDQ IR6	11.2	9.6	8.8
TCT IR1/5	13.1	11.5	10.7
aperture	14.6	13.4	12.3
β* (m)	0.75	0.65	0.55 - 0.6

Assumtion: 11 σ beam-beam separation for 3.75 μ m emittance Should give angle in μ rad compatible also with smaller emittance

R. Bruce, 2014.06.02

- In case of worse aperture, optics correction or orbit than in 2012, be prepared to step back in β*
 - If settling for 170μ rad, this is more likely to happen
- If stepping back to 70cm : gain 0.8 sigma in aperture but lose about 6% in peak lumi (if stepping back in crossing angle, lose less)
 - If we are concerned about aperture, optics correction or orbit stability, we could consider more relaxed start at 70 cm

How to push performance

- With beam experience, push performance. What can we change:
 - **Bunch intensity**: roughly independently of β^* . No limit expected from cleaning
 - Shorter **bunch length** (see later talks) independently of β^*
 - Collimation hierarchy: smaller margins make smaller β^* possible
 - MDs, impedance measurements, BPM studies. OK long-term stability
 - Crossing angle: With smaller emittance, and/or smaller beam-beam separation, smaller crossing angle possible, allows smaller β^*
 - Emittance: Smaller beam from injectors. Study stability, possibly MDs.
 - Beam-beam separation: MDs to study limitations
 - Aperture: should already be close to the limit. Probably not much to gain

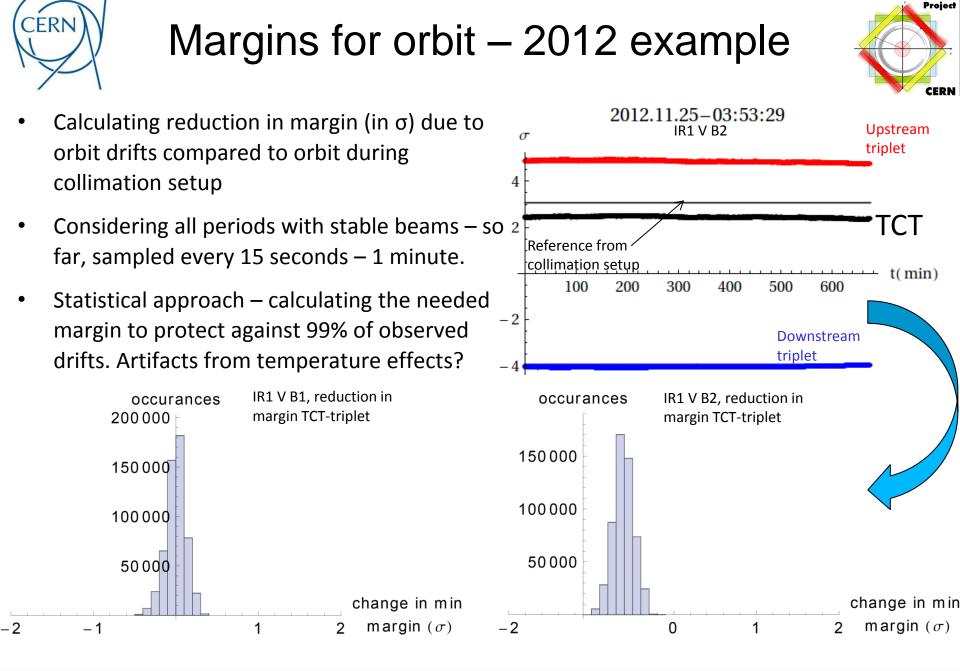
Example: how to reach 55 cm

Psychologically important to reach design parameters. Seems likely to be within reach as intermediate scenario. Some examples on how to get there:

- 2 σ retraction collimator settings
 - $\beta^*=55$ cm, 170 µrad fits exactly with aperture measure to tell if possible...
 - Have to study effect of impedance increase, but calculated single-beam stability should still be OK for large emittance (see talk N. Mounet). Collide and squeeze? Octupoles?
- **Reducing crossing angle** (smaller beam-beam separation and/or emittance)
 - β*=55cm, 130 µrad fits exactly within the 13.4 σ aperture with collimator 2012 settings
 - Possibly compatible with 6 σ DA but needs beam-beam MDs to study feasibility (see talk T. Pieloni, compare DA)
- R. Bruce, 2014.06.02

Ultimate scenario

- Assume that all considered parameters can be pushed to optimistic values. Probably not for 2015...
 - Collimators: 2 σ retraction and assuming max theoretical gain from BPM buttons.
 - Assume (rather aggressively) 10 σ beam-beam separation and an emittance of not more than 2.5 um.
 - Count on significant re-commissioning time. Leveling?
- If all these assumptions come true: $\beta^*=40$ cm, 155 μ rad
 - Alternative: flat beams, e.g. 40/50 cm
 - Not given that we can go so low. Could commission optics to 40cm and beam experience will tell real limit – could be also e.g. 45 cm or 50 cm.

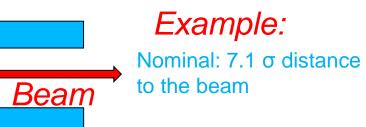

- Collimation influences machine performance: β^{\ast} and intensity reach
- Run 1: β* successfully pushed down in steps. Collimation was not limiting intensity
- **Run 2:** Many things have changed. Start carefully and push performance later.
 - Cleaning not expected to limit intensity
 - Start-up: β*=65 cm, assuming 2012 collimator settings, aperture, correction
 - Intermediate step to $\beta^*=55$ cm hopefully within reach
 - "Ultimate" scenario: $\beta^*=40$ cm. Not likely that we will go lower, but not given that we can get there. The machine will tell us the real limit!

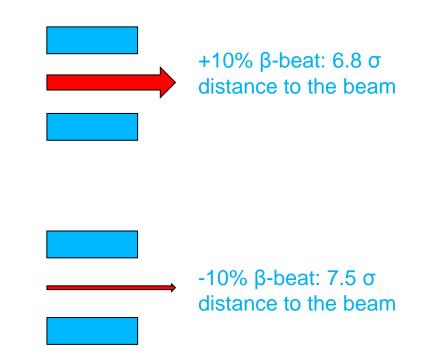
R. Bruce, 2014.06.02

LHC Collimation

R. Bruce, 2013.03.12

Margins for optics errors




- So far: assume most pessimistic β-beat and calculate needed margin
 - Assuming now +10% at location to protect, -10% at protection device (very pessimistic!)
 - Change in margin (in σ) of an aperture is given by

$$M_{\beta} = n\left(\sqrt{\frac{\beta_n}{\beta_r}} - 1\right)$$

- Implicit pessimistic assumption: aperture bottlenecks always at 90 deg from kick
- More detailed model: account for full phase space motion
- First study on leakage to ring collimators during abnormal dumps, including the actual phase advance with imperfections, done in PhD thesis by T. Kramer (2011) for beam 1 at 7 TeV, nominal machine

Collimation in Run 1

- Some sources of concern:
 - Instabilities and impedance appearing with tighter settings
 - Loss spikes around cycle with low lifetime. What is the scaling to 6.5 TeV?
 - Time spent in setup when changing Irs
 - Significant time spent before reaching high performance, driven by machine protection aspects

CERN