Quattor Fabric
Description

Michel Jouvin
jouvin@lal.in2p3.fr
June 16, 2006
Quattor Tutorial
T2 Workshop, CERN

Description goals

What is a machine profile ?
Templates

PAN language

Templates layout
Templates customization
OS and MW upgrades
Documentation and support

« Configuration description is a unique source of
information for all Quattor components

« Quattor description is organized per machine
- Machine profile (XML file)

- Should allow to describe everything about HW and SW
configuration

« Be (as) easy (as possible) to maintain
- High level description language : PAN
- Reusable configuration building blocks : templates

A profile contains all the hardware and software
configuration of a machine

Hardware description

- Used to size some elements (e.g. swap), select drivers...
and validate system configuration (e.g. partition layout)

- Mainly used at installation time
System and software configuration

- System and software RPMs to be deployed

- System/service configuration for every
system/application component

Configuration information is a hierarchy with 3
standard branches

- /hardware : /hardware/cpu, /hardware/ram...
- /software : /software/components, /software/packages..

levricFAarmm v fTvicF A /b arnal /IyvriareiAanm

Building blocks to describe a machine profile
- Written in PAN language

A template can include other templates

Some low level templates describing very specific part o
the system configuration

« E.g. : network configuration, how to start a service, to update a
configuration file...

- These templates are put together to produce a service
description : NIS configuration, Torque configuration...

- Service templates are put together to produce a machin
type description (WN, CE...)

- One machine type is used in a real machine profile with
few customization

PAN allows to build generic templates customized
through variables

R

A typical WN profile template (they are all identical

Template name must match template file name
A machine profile template must have ‘object’ keyword
object template profile ipnls2005;

include pro_wn;

Add repositories
include repository common;

WN machine type template using other templates...

template pro wn;

#
Include base configuration of a LCG2 node
#

include pro_lcg2 machine config base;

#

LCG-2 WN configuration

#

include pro lcg2 machine config wn;

include pro software lcg2 machine wn torque;

#
Virtual organization configuration.
H

include pro vo alice users;

I e

High level language for abstract description of
machine configurations (HLD)

Developed as part of Quattor during EDG WP4

Allow description of the final machine state
Not how to implement it

Comparison between desired state and current state is
done by components (client side) to decide what to do

Derived from declarative languages
Every statement is an assignment (except ‘include’)

Procedural programming (functions) possible on the righ
hand side of assignments (DML)

« No flow control in the template (only in DML)
Variables can be redefined (# declarative languages)
Variables can have a default value (independent of ordet

e I

Process a machine profile template to produce a
profile Low Level Description (LLD)

- Compiler available on any platform (including Windows)
- Compiler output is a XML file (quite large...)
3 phases processing

- Compilation : executes PAN statements to produce
configuration information tree in memory

- Validation : checks type constraints on path elements,
including required resources or properties

« During validation, no modification can be done in information tree
« (Can execute complex function to do validation

- LLD creation : after successful validation, write profile LI

« Nothing written in case of error during compilation or validation

Y A

Mix of C and Perl...
Every statement must end with a';’
Blocks of instruction (DML) are delimited by {};
Operators close to C’s but work on string too

Assignment LHS = path or variable
Path : a (quoted) string with a filename like syntax

Variable : an arbitrary (unquoted) string preceded by
‘variable’ keyword

Dynamically and strongly typed language

Type of path or variable determined when created and
cannot be changed without undefining it

Constraints can be set on path or variables
Checked during validation phase

Default value defined with '?=" instead of '='
Definitive reference is PAN specification

lIndkdkm s /I /1= EElEAr a0 AlRh ~AArs Al /AT ElEAL/AAaA~AiirmaAamESEI ARl AaEpaAa

- - s w - ‘vv‘:.....v.._v _I‘v.lllrlv-

' /hardware/memory/size’ = 256;

' /hardware/cpus/0/vendor’ = ’'Genuinelntel’;

' /hardware/cpus/0/model’ = ’'Pentium III (Coppermine)
' /hardware/cpus/0/speed’ = 800;

' /system/filesystems/0/name’ = ’‘root’;

' /system/filesystems/0/device’ = ' /dev/hdal’;

" /system/filesystems/0/mountpoint’ = '/’ ;

' /system/filesystems/0/type’ = ’‘ext2’;

' /system/filesystems/0/options’ = ’‘defaults’;

' /system/filesystems/1/name’ = ’‘cd’;

' /system/filesystems/1/device’ = ' /dev/cdrom’;

' /system/filesystems/1l/mountpoint’ = ’/mnt/cdrom’;
' /system/filesystems/1/type’ = 'is09660’;

' /system/filesystems/1l/options’ = ’'noauto,owner,ro’;

| - - s w - ‘vv‘:.....v.._v _I‘v.lllrlv-

Assign values to a nlist

variable WN AREAS = nlist(
"alice", "/home/alicesgm",
"atlas", "/home/atlassgm",

) ;

Define a default wvalue for the variable
¥ (exists but undefined). Used 1f no other definition

made (before or after)
variable WN AREAS ?= undef;

Default value definition

Actual value depends on another wvariable

variable WN AREAS ?= if (CE NFS ENABLED) {
nlist (escape ("/home"),CE HOS

} else {

n

return (undef) ;

e e = T

Resources : list (array) and nlist (hash)
Can contain other elements (any type)
Created by list() and nlist() functions

Elements can be added by push() and npush()
Must be assigned to the list that must be modified

length() returns the number of element in the list
Accessed as array/hash in functions
A maximum number of elements can be defined

Properties : simple type, assigned a value
String, boolean, int, double
Literals (constants) for all types, including true/false

2 specific literals

undef : variable/path is existing but is not defined and
has no type (value of any type can be assigned)

null : variable/path is existing but will be deleted if not
exbDlicitlv assianed

e " . L LR o A = T

User defined types : type mytype = {};
Possible to define arbitrary records

type structure ram = {
First element i1s another record
include structure annotation
"size" : long descro "Size of module in MB"
"data rate" ? string

b

- Can define any complex type
- Elements can be optional (?) or mandatory (:)

Variable scoping : inside the block they are defined
Convention is to use lowercase for local variable
Some standard (global) variables are lowercase (self...)

Global variables : defined outside any block
LHS of assignement prefixed with ‘variable’
Naming convention : uppercase
Global variables cannot be modified at a lower scope

Default value : defined with '?7="
Used only if no other explicit defintion
Not sensitive to the order of definition

Null value

Similar to undef, except that if no other explicit definitio
the variable/path is deleted rather than staying undef

An undef path returns an error during validation

Real workhorse of PAN...

Built-in function : executed inside the compiler

Type query, length(), list/nlist creation/iteration, patternr
matching

No string extraction functions
No bitwise functions

Standard functions : defined in a standard template
Mainly list/nlist and software packages manipulation
push, npush, pkg_add, pkg_repl...
Main difference with a built-in function : performance
User functions
Lot of 'user functions’ defined in standard OS/MW templ:
Can be defined anywhere with ‘function’” keyword
Function definition is an assignment...

Ability to include other templates is at the heart of |
Give the ability to reuse templates as building blocks

Normal includes : same effect as copying the conte
of the included template in the current one

include my_other_template;

Structure templates : resulting information tree is
assigned to a path/variable

Structure template cannot be used with include

LHS paths must be relative (not to start with a /)

‘/my/path’ = create(template, [param_name, param_va
Conditional includes

‘include’ statement with a DML as file name (between {}

DML can be a variable name or a function
If DML returns ‘null’ value, nothing is included

qg wauEl w | N a | -_"r w w o - W 1 _"“Illrlv

variable LCG2 BASE CONFIG SITE ?= null;

variable indicating 1f namespaces must be used to
access 0OS templates
variable OS TEMPLATE NAMESPACE ?= false;
variable OS NS OS = if (OS TEMPLATE NAMESPACE)
return("os/") ;
} else {
return("") ;

b

Include OS version dependent RPMs
include { OS NS OS+"pro os lcg base" };

Include site configuration for LCG-2 software
include { LCG2 BASE CONFIG SITE };

S~ U U N AT N T S Y A

Number of templates can be very large...

- A machine profile can be made of 300+ templates

. With several OS/MW versions, CDB can contain 2000+
templates

Layout goals
- Avoid transforming template powerfulness into a nightm

- Minimize the number of site specific templates and keep
separate from standard templates

- Allow several OS/MW version to coexist with minimum (i
1) template duplication

- Support multi-site configuration database (repository)

Layout described here fully supported with SCDB,
partially (OS part) with CDB (not tested)

- Nothing prevent full support by CDB but some works on
existing templates required to add support for namespac

= S~ N A N S S Y A

Machines are organized in “clusters”
Group of related machines, nothing to do with any cluste
Each cluster is a separate subtree of templates
For each cluster, define the OS and MW version used

« SCDB : done with one cluster specific file : cluter.build.properties

OS and MW templates : one directory (tree) per vel
Convention : os/ tree for OS templates, grid/ tree for M\
1 cluster refers to 1 OS version and 1 MW version

OS templates : possible to select OS version per node to
avoid creating 1 cluster for every MW/0OS mix

All theses templates should not be modified
« Most of them are generated, some are maintained manually by QW

1 tree for other standard templates : pan.. (standai

To share site specific parameters between clusters
must create a "site”

Tiick nne Mmore femnlatre rree the cliictrar ic canfiaiiread o

+|-[= build.saved
o zﬁiﬁl
+- [clusters
+- [arid
+- [05
+ [sites
[standard
+-[& external

+

\2500

~—

=I-{= cfg
-G
+

+

0 e e e e M

clusters
[-F dapnia-2.6.0
L arif (15)

v

[ipno-lcg-2.6.0
L7 lal-deskiop-sl420
L lakglite-1.5.0
L lal-lcg-2.6.0

L lal-log-2.7.0

Ly lal-sl305

Ly lal-sk4z0

L7y llF-leg-2.6.0

=% Ipnhe-lcg-2.6.0
[y orme-slcdz

- E} gites

+

¥
T
¥
T
¥
T

L dapnia

L arif (4)

L= Ipno >
L 1l

Ly e
L= Ipnhe
Ly saclay-extra

=Ly e

+

+] [[F] - [F][E

A

-lcg-2.6.0
L= components
Ly lea
= 05
L= profiles
L= repositary
L= site
4 Changelog 2904 06/01/06 16:04 jouvin
D n:IusI:er build. properties 3563 03/03/06 10:31 jou

cluster.pan.includes=sites/ipno/**/* sites/grif/**/* 0s/sI305-i:
standard/**/*

— ipnn:n

1 I'|'|E|E|‘|II'|E.' -tvpes

D_, pro_ce_korgue.tpl 3481 28/02/06 15:10 jouwin
E"'_, pro_wn.kpl 3481 25/02/06 15:10 jouvin

— Ifj sike

E’_, pro_site_databases kpl 3585 03/03/06 16:05 ip
E"_, pro_site_global wvariables. tpl 3218 090206 15

| Changelog 3559 02/03/06 1937 jouvin

e e SR = B SR SR R SR B

« OS templates : mainly generated templates

- A few (<10) templates version independent doing the
mapping to actual version (pro_os_Icg_base...)

- Nothing site specific
« Except repository definition attached to each OS version

« MW templates (QWG) : generated templates (rpm
lists) + manually maintained templates (service cor

- Nothing site specific
« Except repository definition attached to each MW version
e Other standard templates
- Pan standard functions, schema...

Provided in Quattor core

- Component related templates

Information tree for components, functions provided by component

Provided by each component (from Quattor CVS or ?)

Site customizations should be done (only) through
variables used by standard templates

Parameter values, e.g. DNS domain name
Conditionals, e.g. shared NFS fs used on WNs

Name of site specific templates included by standard
templates

E.qg. file system partitions, site specific configuration for monitoring

Some standard site specific templates :

pro_site_cluster_info .tpl : cluster specific parameters

1 per cluster, all parameters except MW

Included at the very beginning of the configuration
pro_lcg2_config_site.tpl : all the parameters for the MW
Need to include pro_Ilcg2_config_site_defaults (generally at the en
pro_site_system_filesystems.tpl : define disk partitions
Variable FILESYSTEM_CONFIG_SITE can specify another template

« Recommendation is to have one template describin
hardware used by a specific node

- Build from templates describing a net card, a cpu, ram...

« Node IP and hardware are described in “"databases”
associating one node name with the corresponding
IP address and hardware templates

- 2 nlist variables : key is node fullname

- Recommended template for these databases is
pro_site_databases.tpl

- Node fullname is retrieved from the profile name

« Side effect : any change in this template will trig a
rebuild of all profiles

- With a very large number of nodes, may consider
splitting this template

-+ Node IP database could be generated from DNS...

Basically the same procedure

Install standard templates for new version in the
repository
Customize repository location (in repository/)
Create a new cluster, copying the existing one
Edit cluster.build.properties to reflect new version

Move machine profiles from original cluster to new
one and deploy

For OS upgrade, it is also possible to select the OS
version in the machine profile without creating a
new cluster

Or to upgrade the whole cluster setting the default OS
version in pro_cluster_config_site.tpl

e A D D

« PAN language
- http://quattor.web.cern.ch/quattor/documentation.htm

- In particular, PAN specification :
http://isscvs.cern.ch:8180/cqi-
bin/cvsweb.cqi/~checkout~/elfms/quattor/documentatic
n/pan-spec/pdf/pan-spec.pdf?rev=HEAD&content-
type=application/pdf&cvsroot=elfms

« Templates layout and customization

- https://trac.lal.in2p3.fr/LCGQWG
- If you want to contribute, need an account (request me)

e QWG Templates source : SVN repository
- https://trac.lal.in2p3.fr/LCGQWG/wiki/Download

e Support :

- Bugs : Savanah
http://quattor.web.cern.ch/quattor/bug reports.htm

- Help : mailing list project-quattor@cern.ch

