
Quattor Fabric
Description

Michel Jouvin
jouvin@lal.in2p3.fr

June 16, 2006
Quattor Tutorial

T2 Workshop, CERN

Outline
• Description goals

• What is a machine profile ?

• Templates

• PAN language

• Templates layout

• Templates customization

• OS and MW upgrades

• Documentation and support

Description Goals
• Configuration description is a unique source of

information for all Quattor components

• Quattor description is organized per machine
- Machine profile (XML file)

- Should allow to describe everything about HW and SW
configuration

• Be (as) easy (as possible) to maintain
- High level description language : PAN

- Reusable configuration building blocks : templates

Machine Profile
• A profile contains all the hardware and software

configuration of a machine

• Hardware description
- Used to size some elements (e.g. swap), select drivers…

and validate system configuration (e.g. partition layout)

- Mainly used at installation time

• System and software configuration
- System and software RPMs to be deployed

- System/service configuration for every
system/application component

• Configuration information is a hierarchy with 3
standard branches

- /hardware : /hardware/cpu, /hardware/ram…

- /software : /software/components, /software/packages…

- /system : /system/kernel/version

Templates
• Building blocks to describe a machine profile

- Written in PAN language

• A template can include other templates
- Some low level templates describing very specific part of

the system configuration
• E.g. : network configuration, how to start a service, to update a

configuration file…

- These templates are put together to produce a service
description : NIS configuration, Torque configuration…

- Service templates are put together to produce a machine
type description (WN, CE…)

- One machine type is used in a real machine profile with a
few customization

• PAN allows to build generic templates customized
through variables

Template Example
• A typical WN profile template (they are all identical)

• WN machine type template using other templates…

Template name must match template file name
A machine profile template must have ‘object’ keyword
object template profile_ipnls2005;

include pro_wn;

Add repositories
include repository_common;

template pro_wn;

#
Include base configuration of a LCG2 node
#
include pro_lcg2_machine_config_base;

#
LCG-2 WN configuration
#
include pro_lcg2_machine_config_wn;
include pro_software_lcg2_machine_wn_torque;

#
Virtual organization configuration.
#
include pro_vo_alice_users;
include pro vo dteam users;

PAN Language
• High level language for abstract description of

machine configurations (HLD)
- Developed as part of Quattor during EDG WP4

• Allow description of the final machine state
- Not how to implement it

- Comparison between desired state and current state is
done by components (client side) to decide what to do

• Derived from declarative languages
- Every statement is an assignment (except ‘include’)

- Procedural programming (functions) possible on the righ
hand side of assignments (DML)

• No flow control in the template (only in DML)

- Variables can be redefined (≠ declarative languages)

- Variables can have a default value (independent of order

Pan Compiler
• Process a machine profile template to produce a

profile Low Level Description (LLD)
- Compiler available on any platform (including Windows)
- Compiler output is a XML file (quite large…)

• 3 phases processing
- Compilation : executes PAN statements to produce

configuration information tree in memory

- Validation : checks type constraints on path elements,
including required resources or properties

• During validation, no modification can be done in information tree

• Can execute complex function to do validation

- LLD creation : after successful validation, write profile LL
• Nothing written in case of error during compilation or validation

PAN Syntax
• Mix of C and Perl…

- Every statement must end with a ‘;’
- Blocks of instruction (DML) are delimited by {};
- Operators close to C’s but work on string too

• Assignment LHS = path or variable
- Path : a (quoted) string with a filename like syntax
- Variable : an arbitrary (unquoted) string preceded by

‘variable’ keyword

• Dynamically and strongly typed language
- Type of path or variable determined when created and

cannot be changed without undefining it
- Constraints can be set on path or variables

• Checked during validation phase

• Default value defined with ‘?=‘ instead of ‘=‘
• Definitive reference is PAN specification

http://quattor web cern ch/quattor/documentation htm

PAN Assignments Examples

’/hardware/memory/size’ = 256;
’/hardware/cpus/0/vendor’ = ’GenuineIntel’;
’/hardware/cpus/0/model’ = ’Pentium III (Coppermine)’
’/hardware/cpus/0/speed’ = 800;
’/system/filesystems/0/name’ = ’root’;
’/system/filesystems/0/device’ = ’/dev/hda1’;
’/system/filesystems/0/mountpoint’ = ’/’;
’/system/filesystems/0/type’ = ’ext2’;
’/system/filesystems/0/options’ = ’defaults’;
’/system/filesystems/1/name’ = ’cd’;
’/system/filesystems/1/device’ = ’/dev/cdrom’;
’/system/filesystems/1/mountpoint’ = ’/mnt/cdrom’;
’/system/filesystems/1/type’ = ’iso9660’;
’/system/filesystems/1/options’ = ’noauto,owner,ro’;

PAN Assignments Examples
Assign values to a nlist
variable WN_AREAS = nlist(

"alice", "/home/alicesgm",
"atlas", "/home/atlassgm",

);

Define a default value for the variable
(exists but undefined). Used if no other definition
made (before or after)
variable WN_AREAS ?= undef;

Default value definition
Actual value depends on another variable
variable WN_AREAS ?= if (CE_NFS_ENABLED) {

nlist(escape("/home"),CE_HOS
} else {
return(undef);

}

PAN Built in Types
• Resources : list (array) and nlist (hash)

- Can contain other elements (any type)
- Created by list() and nlist() functions
- Elements can be added by push() and npush()

• Must be assigned to the list that must be modified

- length() returns the number of element in the list
- Accessed as array/hash in functions
- A maximum number of elements can be defined

• Properties : simple type, assigned a value
- String, boolean, int, double
- Literals (constants) for all types, including true/false

• 2 specific literals
- undef : variable/path is existing but is not defined and

has no type (value of any type can be assigned)
- null : variable/path is existing but will be deleted if not

explicitly assigned

PAN User Defined Types
• User defined types : type mytype = {};

• Possible to define arbitrary records

- Can define any complex type

- Elements can be optional (?) or mandatory (:)

type structure_ram = {
First element is another record
include structure_annotation
"size" : long descro "Size of module in MB"
"data_rate" ? string

};

PAN Variables and Value
• Variable scoping : inside the block they are defined

- Convention is to use lowercase for local variable

- Some standard (global) variables are lowercase (self…)

• Global variables : defined outside any block
- LHS of assignement prefixed with ‘variable’

- Naming convention : uppercase

- Global variables cannot be modified at a lower scope

• Default value : defined with ‘?=“
- Used only if no other explicit defintion

- Not sensitive to the order of definition

• Null value
- Similar to undef, except that if no other explicit definition

the variable/path is deleted rather than staying undef
• An undef path returns an error during validation

PAN Functions
• Real workhorse of PAN…

• Built-in function : executed inside the compiler
- Type query, length(), list/nlist creation/iteration, pattern

matching

- No string extraction functions

- No bitwise functions

• Standard functions : defined in a standard template
- Mainly list/nlist and software packages manipulation

• push, npush, pkg_add, pkg_repl…

- Main difference with a built-in function : performance

• User functions
- Lot of ‘user functions’ defined in standard OS/MW templa

- Can be defined anywhere with ‘function’ keyword

- Function definition is an assignment…

PAN Includes
• Ability to include other templates is at the heart of P

- Give the ability to reuse templates as building blocks

• Normal includes : same effect as copying the conten
of the included template in the current one

- include my_other_template;

• Structure templates : resulting information tree is
assigned to a path/variable

- Structure template cannot be used with include

- LHS paths must be relative (not to start with a /)

- ‘/my/path’ = create(template, [param_name, param_va

• Conditional includes
- ‘include’ statement with a DML as file name (between {}

- DML can be a variable name or a function

- If DML returns ‘null’ value, nothing is included

PAN : A Few More Example
variable LCG2_BASE_CONFIG_SITE ?= null;

variable indicating if namespaces must be used to
access OS templates
variable OS_TEMPLATE_NAMESPACE ?= false;
variable OS_NS_OS = if (OS_TEMPLATE_NAMESPACE) {

return("os/");
} else {
return("");

};

Include OS version dependent RPMs
include { OS_NS_OS+"pro_os_lcg_base" };

Include site configuration for LCG-2 software
include { LCG2_BASE_CONFIG_SITE };

Templates Layout…
• Number of templates can be very large…

- A machine profile can be made of 300+ templates

- With several OS/MW versions, CDB can contain 2000+
templates

• Layout goals
- Avoid transforming template powerfulness into a nightm

- Minimize the number of site specific templates and keep
separate from standard templates

- Allow several OS/MW version to coexist with minimum (o
!) template duplication

- Support multi-site configuration database (repository)

• Layout described here fully supported with SCDB,
partially (OS part) with CDB (not tested)

- Nothing prevent full support by CDB but some works on
existing templates required to add support for namespac

… Templates Layout
• Machines are organized in “clusters”

- Group of related machines, nothing to do with any cluste
- Each cluster is a separate subtree of templates
- For each cluster, define the OS and MW version used

• SCDB : done with one cluster specific file : cluter.build.properties

• OS and MW templates : one directory (tree) per ver
- Convention : os/ tree for OS templates, grid/ tree for MW
- 1 cluster refers to 1 OS version and 1 MW version
- OS templates : possible to select OS version per node to

avoid creating 1 cluster for every MW/OS mix
- All theses templates should not be modified

• Most of them are generated, some are maintained manually by QW

• 1 tree for other standard templates : pan.. (standar
• To share site specific parameters between clusters y

must create a “site”
- Just one more template tree the cluster is configured to

SCDB Structure Example

cluster.pan.includes=sites/ipno/**/* sites/grif/**/* os/sl305-i3
standard/**/*

(2500)

(15)

(4)

Standard Templates
• OS templates : mainly generated templates

- A few (<10) templates version independent doing the
mapping to actual version (pro_os_lcg_base…)

- Nothing site specific
• Except repository definition attached to each OS version

• MW templates (QWG) : generated templates (rpm
lists) + manually maintained templates (service con

- Nothing site specific
• Except repository definition attached to each MW version

• Other standard templates
- Pan standard functions, schema…

• Provided in Quattor core

- Component related templates
• Information tree for components, functions provided by component

• Provided by each component (from Quattor CVS or ?)

Site Customizations
• Site customizations should be done (only) through

variables used by standard templates
- Parameter values, e.g. DNS domain name

- Conditionals, e.g. shared NFS fs used on WNs

- Name of site specific templates included by standard
templates

• E.g. file system partitions, site specific configuration for monitoring

• Some standard site specific templates :
- pro_site_cluster_info .tpl : cluster specific parameters

• 1 per cluster, all parameters except MW

• Included at the very beginning of the configuration

- pro_lcg2_config_site.tpl : all the parameters for the MW
• Need to include pro_lcg2_config_site_defaults (generally at the end

- pro_site_system_filesystems.tpl : define disk partitions
• Variable FILESYSTEM_CONFIG_SITE can specify another template

Node IP and Hardware
• Recommendation is to have one template describing

hardware used by a specific node
- Build from templates describing a net card, a cpu, ram…

• Node IP and hardware are described in “databases”
associating one node name with the corresponding
IP address and hardware templates

- 2 nlist variables : key is node fullname

- Recommended template for these databases is
pro_site_databases.tpl

- Node fullname is retrieved from the profile name

• Side effect : any change in this template will trig a
rebuild of all profiles

- With a very large number of nodes, may consider
splitting this template

• Node IP database could be generated from DNS…

OS or MW Upgrades
• Basically the same procedure

• Install standard templates for new version in the
repository

- Customize repository location (in repository/)

• Create a new cluster, copying the existing one
- Edit cluster.build.properties to reflect new version

• Move machine profiles from original cluster to new
one and deploy

• For OS upgrade, it is also possible to select the OS
version in the machine profile without creating a
new cluster

- Or to upgrade the whole cluster setting the default OS
version in pro_cluster_config_site.tpl

Documentation, Support
• PAN language

- http://quattor.web.cern.ch/quattor/documentation.htm
- In particular, PAN specification :

http://isscvs.cern.ch:8180/cgi-
bin/cvsweb.cgi/~checkout~/elfms/quattor/documentatio
n/pan-spec/pdf/pan-spec.pdf?rev=HEAD&content-
type=application/pdf&cvsroot=elfms

• Templates layout and customization
- https://trac.lal.in2p3.fr/LCGQWG
- If you want to contribute, need an account (request me)

• QWG Templates source : SVN repository
- https://trac.lal.in2p3.fr/LCGQWG/wiki/Download

• Support :
- Bugs : Savanah

http://quattor.web.cern.ch/quattor/bug_reports.htm
- Help : mailing list project-quattor@cern.ch

