
Software deployment and service
administration with Quattor

Quattor @ LCG T2 workshop, 16/6/06

German Cancio

CERN/IT

2

Outline

Software Deployment

Service Configuration

3

Outline

Software Deployment:

SWRep and SPMA overview

SWRep/SPMA vs. APT/yum

Service Configuration

4

SWRep (Software Repository)

Universal repository for storing Software:

Extendable to multiple platforms and packagers
(RH Linux RPM.. Solaris PKG, others like Debian pkg)

Stores multiple package versions/releases per platform

Management (“product maintainers”) interface:

ACL based mechanism to grant/deny modification rights
(packages associated to “areas”)

Uses SOAP since Quattor 1.2

Client access: via standard protocols

HTTP, AFS/NFS, FTP

Replication for load balancing/redundancy: using standard tools

Locally: Apache mod_proxy ; squid (as used at CERN)

Remotely: Rsync (distributed T2’s)

5

SPMA (Software Package Manager Agent)

Can manage either all or a subset of packages on the nodes

On production nodes: full control - wipe out unknown packages,
(re)install missing ones.

On development nodes: non-intrusive, configurable management of
system and security updates.

Package manager, not only upgrader

Can roll back package versions

Transactional verification of operations

Scalability:

Supports HTTP (also FTP, AFS/NFS) and forward/reverse proxies

Time smearing and package pre-caching

Portability via generic plug-in framework

System packager specific transactional interface (RPMT, PKGT)

Multiple repositories can be accessed (eg. division/experiment
specific)

6

SPMA (II)

SPMA functionality:

1.Compares the packages currently installed on the local node with
the packages listed in the configuration profile

2.Computes the necessary install/deinstall/upgrade operations

3.Invokes the packager (rpmt/pkgt) with the right operation
transaction set

The SPM is driven via a local configuration file

An NCM component (ncm-spma) generates/updates this
configuration file out of CDB information

/var/lib/spma-target.cf

7

SPMA (III)

RPMT

RPMT (RPM transactions) is a small tool on top of the RPM
libraries, which allows for multiple simultaneous package
operations resolving dependencies (unlike plain RPM)

Example: ‘upgrade X, deinstall Y, downgrade Z, install T’ and
verify/resolve appropriate dependencies

Does use basic RPM library calls, no added intelligence

8

SPMA/SWRep vs. other package
management tools

Quattor does not impose using any packaging tool.

SPMA

APT (and yum, not described here as very similar to APT)

SPMA advantages:

Declarative: Keep list of packages in CDB templates. Packages are
updated/downgraded as required.

SPMA behaves stateless.

Every node may have a completely different setup in terms of installed
packages and versions.

Not "go for the latest"

Explicit separation of Package depot (SWRep) and configuration (in
CDB)

You can have multiple versions (old, production, new, beta) of packages in the
repository without causing client updates

SPMA supports rollbacks. Just change the packages/versions in CDB and
SPMA will take care to downgrade/upgrade/install/remove whatever is
required.

SPMA supports multiple simultaneous package versions on one node.

9

SPMA/SWRep vs. other package
management tools

APT advantages:

Standard tool shipped with Scientific Linux
LCG and Quattor offer APT/yum repositories for downloading software

Dependency resolution
But may decide to resolve differently than what you want! Eg. More than one
package 'providing' a dependency.

Requires to set 'priorities' on repositories.

Nice GUIs (synaptic), easier to use.

APT and SPMA/SWRep should not be used in parallel on the same
node.

However, it is possible to bootstrap the Quattor server with APT, and then
use SPMA to manage your farms and servers

The choice between SPMA and APT/yum will depend on the
complexity of your environment and/or the control level you need.

CERN example: SPMA for Computer Centre ("full" mode for batch nodes,
"light" mode for development nodes)

APT for desktops

10

SW configuration in CDB with SPMA

Some PAN functions are provided for manipulating the package
list in the profile, which are used in the templates:

pkg_add(“packagename”,[”version-release”,”arch”]);

Adds a package to the profile (version-release and arch are optional)

pkg_del(“packagename”,[“version-release”]);

Removes a package version (or all if none specified) from the profile .

pkg_repl(“packagename”,”new ver-rel”,”arch”[,”old ver-rel”]);

Replaces the package version ‘old’ by ‘new’ in the profile. If ‘old’ is
not specified, it replaces all other versions.

It is important to understand that the ‘add’,’del’ and ‘repl’
functions do only modify the final list of desired packages.

Eg. ‘pkg_del’ does not instruct to delete any package, but removes it
from the list of desired packages

Useful when modifying inherited profiles

template pro_software_packages_i386_sl3;
…
take defaults – no specific version-release
"/software/packages" = pkg_add("4Suite");
"/software/packages" = pkg_add("ElectricFence");
"/software/packages" = pkg_add("GConf2");
"/software/packages" = pkg_add("GConf2-devel");
"/software/packages" = pkg_add("ImageMagick");
"/software/packages" = pkg_add("Omni");
"/software/packages" = pkg_add("Omni-foomatic");
"/software/packages" = pkg_add("PyXML");
"/software/packages" = pkg_add("SDL");
"/software/packages" = pkg_add("SDL-devel");
"/software/packages" = pkg_add("SysVinit");
…

specific version requested
"/software/packages"=pkg_add(“mypackage","1.10.15-1","noarch");
"/software/packages"=pkg_add(“other_package","0.0.14-1","i386");

remove an “inherited” package
"/software/packages"=pkg_del(“somepkg");

11

Running SPMA

The SPMA configuration is generated/updated by running an NCM
component

ncm-ncd --configure spma : updates /var/lib/spma-target.cf
and /etc/spma.conf if needed

The NCM component updates the SPMA config files, and can
automatically run the SPMA if there were changes

SPMA is run as follows:
spma [options]

Most important SPMA options:
--noaction

--verbose

--userpkgs (yes/no) run in ‘light’ or ‘full’ mode

--userprio (yes/no) upgrade/downgrade packages installed by user

The typical sequence of operation is:
1. update templates in CDB via cdbop

2. run ncm-ncd --configure spma

spma

[INFO] SPMA version 1.10.10 started by root at: Fri May 5 13:30:03 2006
[INFO] using local package cache in: /var/spma-cache/
[INFO] proxy server activated, type: reverse

proxy server(s): lxc1m991
[INFO] active proxy found: lxc1m991
[INFO] examining local installations..
[INFO] reading target configuration ..
[INFO] executing operations..
[INFO] The following package operations are required:

replace - php 4.3.2 26.ent i386 with
http://swrep/swrep/i386_slc3/ php 4.3.2 30.ent i386
replace - php-mysql 4.3.2 26.ent i386 with
http://swrep/swrep/i386_slc3/ php-mysql 4.3.2 30.ent i386
replace - php-oci8 4.3.2 26.ent i386 with
http://swrep/swrep/i386_slc3/ php-oci8 4.3.2 30.ent i386

[INFO] Please be patient... 3 operation(s) to verify/execute.
[OK] SPMA finished successfully.

12

Outline

Software Deployment

Service Configuration:

NCM (Node Configuration Manager) overview

Some example components

13

What are components? (1/2)

“Components” (like SUE “features” or LCFG ‘objects’) are responsible for
updating local config files, and notifying services if needed

Components do only configure the system (unlike LCFG!)
Usually, this implies regenerating and/or updating local config files (eg.
/etc/sshd_config)

Use standard system facilities (SysV scripts) for managing services
Components can notify services using SysV scripts when their configuration changes.

Components can be run
Manually (via ncm-ncd)

via hooks (cron, boot time, etc)

automatically: register their interest in configuration entries or subtrees, and get
invoked in case of changes (via ncm-cdispd)

Possible to define configuration dependencies between components
Eg. configure SPMA before GRUB

Components won’t run if a pre-dependency is unsatisfied (eg. failing prerequisite
component)

14

What are components? (2/2)

Components are written as Perl OO class instances

But don’t worry, no OO knowledge needed for writing them, just some
Perl.

Each component is packaged as an individual RPM.

Each component can provide two methods:

Configure():

invoked when there was a CDB configuration change or on startup

Mandatory method

Unconfigure():

invoked when a component is to be removed

Optional method – most of the components don’t need to implement it.

15

Component (simplified) example

sub Configure {

my ($self,$config) = @_;

1. access configuration information

my $arch=$config->getValue('/system/architecture’); # NVA API

$self->Fail (“not supported") unless ($arch eq ‘i386’);

2. (re)generate and/or update local config file(s)

open (myconfig,’/etc/myconfig’); …

3. notify affected (SysV) services if required

if ($changed) {

system(‘/sbin/service myservice reload’); …

}

}

16

Existing components

> 100 NCM configuration components are available:

Configure basic Quattor and core system services
Quattor services: ccm, spma, cdp

System services: accesscontrol, accounts, autofs, cron, filecopy,
grub, iptables, ldconf, lmsensors, logrotate, mailaliases,
network, netdriver, nfs, ntpd, portmap, profile, serialclient,
smartd, ssh, sysctl

Configure advanced system services
Including castor, chkconfig, fiberchannel, gdmconf, ipmi,
lsfclient, named, quota, screensaver, sysacct

These would need more testing outside CERN

Configure Grid services
bdiicfg, ceinfo, cliconfig, cmnconfig, condorconfig, edglcg,
gip, globuscfg, gridmapdir, guiconfig, infoproviders,
lbconfig, lcas, lcgbdii, lcginfo, lcmaps, mkgridmap, myproxy,
pbsclient, rgmaproducer, rm, uicmnconfig, wlconfig, yaim

17

Components and CDB configuration

Components can have “private” configuration entries, including:

Components can access configuration information anywhere in the
node profile (/system/.., /software/.., /hardware/..)

Useful to share common configuration entries between components
Eg. /system/kernel/version

All components need to declare their “private” config data types, and
can define default values
pro_declaration_component_<component>.tpl <- structure
pro_software_component_<component>.tpl <- default values

/software/components/<name>/active (bool) <- component active?
dispatch (bool) <- run automatically via cdispd?
dependencies/pre (string[]) <- run components before
dependencies/post (string[]) <- run components after
foo/... (component specific)
bar/... (component specific)

18

Example components (I)

ncm-grub:

Functionality

configures the GRUB boot loader.

Uses the ‘grubby’ command line tool.

Won’t change grub config if inconsistencies found.

Most important config parameters:

More info:

man ncm-grub

/system/kernel/version (string): kernel version to be used.

19

Example components (II)

ncm-cron:

Functionality

Adds/removes cron entries.

Places them under /etc/cron.d with a log file in /var/log.

Respects existing cron.d entries.

Most important config parameters:

More info:
man ncm-cron

/software/components/cron/entries/list/name (string) cron entry name (eg.
“example”)

user (string) user (eg. “root”)
frequency (string) eg. “* 1 * * *”
command (string) “/bin/myexec”

20

Example components (III)

ncm-accounts:

Functionality
Controls the /etc/passwd, /etc/group, (/etc/shadow) files.

Most important config parameters:

More info:
man ncm-accounts

/software/components/accounts/rootpwd (string) crypted root password.
shadowpwd (boolean) use /etc/shadow.

For every user:
/software/components/accounts/users/<user>/comment (string) comment field

<user>/uid (string) groups it belongs to
<user>/passsword (str) crypted password
<user>/createHome (bool) make homedir?

21

How to run components? (I)

Manually:

ncm-ncd (Node Configuration Deployer):

framework and front-end for executing components (via cron, cdispd,
or manually)

dependency ordering of components

Invoke it (on the target node) with:

You should run it manually eg. for debugging purposes

A logfile directory (with all component logs) is found under

Check its manpage, ncm-ncd(1)

ncm-ncd –configure --all runs configure on all active components
ncm-ncd --configure [<component>] runs configure method on <component>

and dependent components
ncm-ncd --unconfigure <component> runs unconfigure method
ncm-ncd --list gives information about all installed components, and their

dependencies

/var/log/ncm/ncm-ncd.log <- general framework log
/var/log/ncm/component-<component>.log <- log of every component

ncm-ncd --configure grub

[INFO] NCM-NCD version 1.2.3 started by root at: Thu Jun 15
17:20:16 2006
[INFO] executing configure on components....

[INFO] running component: grub

[OK] updated boot kernel version to /boot/vmlinuz-2.4.21-
40.EL.cernsmp
[INFO] configure on component grub executed, 0 errors, 0 warnings

===

[OK] 0 errors, 0 warnings executing configure

ncm-ncd --list

active components found inside profile /software/components:
name file? predeps postdeps

libterm: yes
lbclient: yes
zephyrclt: yes
ssh: yes
afsclt: yes
spma: yes
cdp: yes
consoleclient: yes
sendmail: yes
sysctl: yes
access_control:yes
ntpd: yes
krb5clt: yes
regisclient: yes
smartd: yes
grub: yes
lsfclient: yes chkconfig
quota: yes
srvtab: yes afsclt
rpmverify: yes
snmp: yes
cron: yes
chkconfig: yes
fmonagent: yes

22

How to run components? (II)

Automatically (default!):

ncm-cdispd (Configuration Dispatch Daemon)

Monitors the config profile, and invokes registered components via
ncm-ncd if there were changes

Looks up for changes for every component in the following entry:

Additional entries to watch can be configured (eg.
/system/kernel/version for the grub component)

All operations are logged:

/software/components/<component>/...

/var/log/ncm-cdispd.log

23

ncm-query
• Use ncm-query for to visualize component configuration

information on the target node:

ncm-query –-component <component>

ncm-query –dump /path/in/configuration/tree

ncm-query –-component spma

[INFO] Subtree: /software/components/spma
+-spma

$ active : (boolean) 'true'
$ headnode : (boolean) 'true'
$ proxy : (string) 'yes'

ncm-query --dump /system/kernel/version

[INFO] Subtree: /system/kernel/version
$ version : (string) '2.4.21-40.EL.cernsmp'

24

http://quattor.org

