Software deployment and service
administration with Quattor

Quattor @ LCG T2 workshop, 16/6/06

German Cancio
CERN/IT




Software Deployment

Service Configuration




Software Deployment:
. SWRep and SPMA overview
« SWRep/SPMA vs. APT/yum

Service Configuration




L= SWRep (Software Repository)

L
e

¢ Universal repository for storing Software:

. Extendable to multiple platforms and packagers
(RH Linux RPM.. Solaris PKG, others like Debian pkg)

. Stores multiple package versions/releases per platform

¢ Management (“product maintainers”) interface:

. ACL based mechanism to grant/deny modification rights
(packages associated to “areas”)

« Uses SOAP since Quattor 1.2

¢ Client access: via standard protocols
. HTTP, AFS/NFS, FTP

¢ Replication for load balancing/redundancy: using standard tools
. Locally: Apache mod_proxy ; squid (as used at CERN)
. Remotely: Rsync (distributed T2’s)




"NREL= SPMA (Software Package Manager Agent)

¢ Can manage either all or a subset of packages on the nodes

- On production nodes: full control - wipe out unknown packages,
(re)install missing ones.

- On development nodes: non-intrusive, configurable management of
system and security updates.

¢ Package manager, not only upgrader
. Can roll back package versions

. Transactional verification of operations

+ Scalability:
« Supports HTTP (also FTP, AFS/NFS) and forward/reverse proxies

. Time smearing and package pre-caching

+ Portability via generic plug-in framework
. System packager specific transactional interface (RPMT, PKGT)

¢ Multiple repositories can be accessed (eg. division/experiment
specific)




©)

LE SPMA (I11) i

¢ SPMA functionality:

1.Compares the packages currently installed on the local node with
the packages listed in the configuration profile

2.Computes the necessary install/deinstall/upgrade operations

3.Invokes the packager (rpmt/pkgt) with the right operation
transaction set

¢ The SPM is driven via a local configuration file

- An NCM component (ncm-spma) generates/updates this
configuration file out of CDB information

« /var/lib/spma-target.cf




| £ SPMA (111)

RPMT

+RPMT (RPM transactions) is a small tool on top of the RPM
libraries, which allows for multiple simultaneous package
operations resolving dependencies (unlike plain RPM)

. Example: ‘upgrade X, deinstall Y, downgrade Z, install T' and
verify/resolve appropriate dependencies

¢ Does use basic RPM library calls, no added intelligence




»  SPMA/SWRep vs. other package

"RC| - management tools

¢ Quattor does not impose using any packaging tool.
. SPMA

. APT (and yum, not described here as very similar to APT)

¢ SPMA advantages:

. Declarative: Keep list of packages in CDB templates. Packages are
updated/downgraded as required.

. SPMA behaves stateless.

. Every node may have a completely different setup in terms of installed
packages and versions.

. Not "go for the latest"

. Explicit separation of Package depot (SWRep) and configuration (in
CDB)

. You can have multiple versions (old, production, new, beta) of packages in the
repository without causing client updates

. SPMA supports rollbacks. Just change the packages/versions in CDB and
SPMA will take care to downgrade/upgrade/install/remove whatever is
required.

. SPMA supports multiple simultaneous package versions on one node.




»  SPMA/SWRep vs. other package

\C| = management tools
& APT advantages:

. Standard tool shipped with Scientific Linux
. LCG and Quattor offer APT/yum repositories for downloading software

. Dependency resolution

. But may decide to resolve differently than what you want! Eg. More than one
package ‘providing' a dependency.

. Requires to set 'priorities’ on repositories.
- Nice GUIs (synaptic), easier to use.
¢ APT and SPMA/SWRep should not be used in parallel on the same
node.

. However, it is possible to bootstrap the Quattor server with APT, and then
use SPMA to manage your farms and servers

¢ The choice between SPMA and APT/yum will depend on the
complexity of your environment and/or the control level you need.

« CERN example: SPMA for Computer Centre ("full" mode for batch nodes,
"light" mode for development nodes)

. APT for desktops




©)

SW configuration in CDB with SPMA i

Some PAN functions are provided for manipulating the package
list in the profile, which are used in the templates:

¢ pkg add(“packagename”, ["version-release”,”arch”]);
. Adds a package to the profile (version-release and arch are optional)

¢ pkg del (“packagename”, [“version-release”]) ;

« Remoy template pro software packages 1386 sl3;

Q take defaults - no specific version-release
¢ Pkg_repl "/software/packages" pkg add("4Suite") ;

"/software/packages" = pkg add("ElectricFence") ;
. I?epﬂax "/software/packages" = pkg add("GConf2") ;
not sp "/software/packages" = pkg add("GConf2-devel") ;
"/software/packages" = pkg add("ImageMagick") ;
.. "/software/packages" = pkg add("Omni") ;
'3 It IS Imp( "/software/packages" = pkg add("Omni-foomatic");
functions "/software/packages" = pkg add("PyXML");
Y "/software/packages" = pkg add("SDL");
. "/software/packages" = pkg add("SDL-devel");
" EQL p! "/software/packages" = pkg add("SysVinit");

from t .-

. Usefull # specific version requested
"/software/packages"=pkg add(“*mypackage","1.10.15-1", "noarch") ;
"/software/packages"=pkg add(“other package","0.0.14-1","i386");

# remove an “inherited” package
"/software/packages"=pkg del (“somepkg") ;

10



=7,

"REL= Running SPMA

¢ The SPMA configuration is generated/updated by running an NCM

©)

o Ay

component
. ncm-ncd --configure spma : updates /var/lib/spma-target.cf
and /etc/spma.conf if needed
=Y W | 'y 1 A 'y ) ONMNANAA L L1 1
- The NF“ oo
autom
[INFO] SPMA version 1.10.10 started by root at: Fri May 5 13:30:03 2006
; [INFO] using local package cache in: /var/spma-cache/
& SPMA IS | [INFO] proxy server activated, type: reverse
proxy server (s): lxclm991
i spm [INFO] active proxy found: 1xclm991
[INFO] examining local installations..
[INFO] reading target configuration ..
I [INFO] executing operations..
¢ Most |mF [INFO] The following package operations are required:
replace - php 4.3.2 26.ent 1386 with
= --noa http://swrep/swrep/i386 slc3/ php 4.3.2 30.ent 1386
replace - php-mysgl 4.3.2 26.ent 1386 with
" --Ver http://swrep/swrep/i386 slc3/ php-mysgl 4.3.2 30.ent i386
replace - php-oci8 4.3.2 26.ent 1386 with
= http://swrep/swrep/i386 slc3/ php-oci8 4.3.2 30.ent 1386
[INFO] Please be patient... 3 operation(s) to verify/execute.
Use [OK] SPMA finished successfully.

¢ The typical sequence of operation is:
1. update templates in CDB via cdbop

2.run ncm-ncd --configure spma

11



Software Deployment

Service Configuration:
- NCM (Node Configuration Manager) overview

- Some example components

12



KCLE What are components? (1/2)

¢ “Components” (like SUE “features” or LCFG ‘objects’) are responsible for
updating local config files, and notifying services if needed
¢ Components do only configure the system (unlike LCFG!)

« Usually, this implies regenerating and/or updating local config files (eg.
/etc/sshd config)

+ Use standard system facilities (SysV scripts) for managing services
« Components can notify services using SysV scripts when their configuration changes.

¢ Components can be run
= Manually (via ncm-ncd)
« Vvia hooks (cron, boot time, etc)

= automatically: register their interest in configuration entries or subtrees, and get
invoked in case of changes (via ncm-cdispd)

+ Possible to define configuration dependencies between components
« Eg. configure SPMA before GRUB

« Components won’t run if a pre-dependency is unsatisfied (eg. failing prerequisite
component)

13



L= What are components? (2/2)

¢ Components are written as Perl OO class instances

. But don’t worry, no OO knowledge needed for writing them, just some
Perl.

¢ Each component is packaged as an individual RPM.

¢ Each component can provide two methods:

¢ Configure() :
. invoked when there was a CDB configuration change or on startup
. Mandatory method

¢ Unconfigure():

. Invoked when a component is to be removed

. Optional method — most of the components don’t need to implement it.

14



c..'@;’

NELR Component (simplified) example

sub Configure {
my ($self,Sconfig) = @ ;
# 1. access configuration information
my Sarch=Sconfig->getValue('/system/architecture’); # NVA API
ssgelf--Fail (\not supported!) urnilesag (Sarch eq '1386') ;
# 2. (re)generate and/or update local config file(s)
open (myconfig,’/etc/myconfig’);
# 3. notify affected (SysV) services if required
if ($changed) {

system(‘/sbin/service myservice reload’);

15



WEL L Existing components

> 100 NCM configuration components are available:

¢ Configure basic Quattor and core system services
- Quattor services: cecm, spma, cdp

. System services: accesscontrol, accounts, autofs, cron, filecopy,
grub, iptables, ldconf, lmsensors, logrotate, mailaliases,
network, netdriver, nfs, ntpd, portmap, profile, serialclient,

smartd, ssh, sysctl
¢ Configure advanced system services

- Including castor, chkconfig, fiberchannel, gdmconf, ipmi,
lsfclient, named, quota, screensaver, sysacct

. These would need more testing outside CERN

¢ Configure Grid services

« bdiicfg, ceinfo, cliconfig, cmnconfig, condorconfig, edglcg,
gip, globuscfg, gridmapdir, guiconfig, infoproviders,
lbconfig, lcas, lcgbdii, lcginfo, lcmaps, mkgridmap, myproxy,
pbsclient, rgmaproducer, rm, uicmnconfig, wlconfig, yaim

16



c..'@;’

" T

NELR Components and CDB configuration

¢ Components can have “private” configuration entries, including:

/software/components/<name>/active (bool) <- component active?
dispatch (bool) <- run automatically via cdispd?
dependencies/pre (string[]) <-run components before
dependencies/post (string[]) <- run components after
foo/... (component specific)
bar/... (component specific)

« Components can access configuration information anywhere in the
node profile (/system/.., /software/.., /hardware/..)

« Useful to share common configuration entries between components

- EQ. /system/kernel/version

+ All components need to declare their “private” config data types, and
can define default values

i ie-iiare i o el f e EomMaeaen - En. | | Bs S ST B

pro software component <components.tpl <- default values

17



c..'@;’

;*/Q\_;_.,

NELR Example components (1)

ncm-grub:

+ Functionality
. configures the GRUB boot loader.
. Uses the ‘grubby’ command line tool.

. Won’t change grub config if inconsistencies found.

¢ Most important config parameters:

/system/kernel/version (string): kernel version to be used.

¢ More info:

= man ncm-grub

18



c..'@;’

”"/ﬁ_\_‘_

NELR Example components (11)

ncm-cron:

¢ Functionality
. Adds/removes cron entries.
. Places them under /etc/cron.d with a log file in /var/log.

. Respects existing cron.d entries.

¢ Most important config parameters:

/software/components/cron/entries/list/name (string) cron entry name (eg.

“example”)
user (string) user (eg. “root”)
frequency (string) eg. “* 1 ***”
command (string) “/bin/myexec”

¢ More info:

= Marn ncm-cCcror

19



c..'@;’

" T

NELR= Example components (111)

Nncm-accounts:

¢ Functionality
. Controls the /etc/passwd, /etc/group, (/etc/shadow) files.

¢ Most important config parameters:

/software/components/accounts/rootpwd (String) crypted root password.

shadowpwd (boolean) use /etc/shadow.

For every user:

/software/components/accounts/users/<user>/comment (string) comment field
<user>/uid (string) groups it belongs to
<user>/passsword (str) crypted password
<user>/createHome (bool) make homedir?

¢ More info;

« Man ncm-accounts

20



=7,

"RELR How to run components? (1)

Manually:

¢ ncm-ncd (Node Configuration Deployer):

framework # ncm-ncd --configure grub
# ncm-ncd --list
or manually)
active components found inside profile /software/components:
. dependency name file? ©predeps postdeps
. libterm: yes
n InVOke It (Or lbclient: yes
zephyrclt: ves
# ncm-ncd -config ssh: yes
-l afsclt: yes
# ncm-ncd ——Conflsgm: yes
cdp: yes
consoleclient: yes
# ncm-ncd --uncor] sendmail: e
) sysctl: yes
# ncm-ncd --1list access_control:yes
ntpd: yes
krb5clt: yes
regisclient: yves
smartd: yes
= You should r| grub: yes
lsfclient: yes chkconfig
H : quota: yves
- A |ng||e dire srvtab: yes afsclt
rpmverify: yes
snmp : yes
# /var/log/ncm/ng J1D: ves
# /var/log/ncm/cd chkconfig: yes
fmonagent: yes

21



LE How to run components? (11)

1T
Ll ;

Automatically (default!):

encm-cdispd (Configuration Dispatch Daemon)

. Monitors the config profile, and invokes registered components via
ncm-ncd if there were changes

. Looks up for changes for every component in the following entry:

/software/components/<component>/. ..

. Additional entries to watch can be configured (eg.
/system/kernel/version for the grub component)

. All operations are logged:

/var/log/ncm-cdispd. log

22



2L @

REL= ncm-query FA

e Use ncm-query for to visualize component configuration
information on the target node:

# ncm-query --component <components

# ncm-query -dump /path/in/configuration/tree

# ncm-query --component spma

[INFO] Subtree: /software/components/spma

+-Spma
S active : (boolean) 'true'
S headnode : (boolean) 'true'
S proxy : (string) 'vyes'

# ncm-query --dump /system/kernel/version

[INFO] Subtree: /system/kernel/version
$ version : (string) '2.4.21-40.EL.cernsmp'

23



quattor

http://qguattor.orqg

24



