

O² Project :Upgrade of the online and offline computing

Pierre VANDE VYVRE

Requirements

Focus of ALICE upgrade on physics probes requiring high statistics: sample 10 nb⁻¹

Online System Requirements

Sample full 50kHz Pb-Pb interaction rate

- current limit at ~500Hz, factor 100 increase
- system to scale up to 100 kHz

⇒ ~1.1 TByte/s detector readout

However:

- Storage bandwidth limited to a much lower value (design decision/cost)
- Many physics probes have low S/B: classical trigger/event filter approach not efficient

O² System from the Letter of Intent

Design Guidelines

Handle >1 TByte/s detector input Produce (timely) physics result

Online Reconstruction to

- reduce data volume
- Output of System AODs

Minimize "risk" for physics results

- Allow for reconstruction with improved calibration,
 e.g. store clusters associated to tracks instead of tracks
- S Minimize dependence on initial calibration accuracy
- Implies "intermediate" storage format

Keep cost "reasonable"

- Limit storage system bandwidth to ~80 GB/s peak and 20 GByte/s average
- G Optimal usage of compute nodes

Reduce latency requirements & increase fault-tolerance

O² Project

Project Organization

PLs: P. Buncic, T. Kollegger, P. Vande Vyvre

Computing Working Group(CWG)

- 1 Architecture
- **Tools & Procedures** 2.
- 3. Dataflow
- Data Model 4.
- **Computing Platforms** 5.
- 6. Calibration
- 7. Reconstruction
- 8. **Physics Simulation**
- 9. QA, DQM, Visualization
- 10. Control, Configuration, Monitoring
- 11. Software Lifecycle
- 12. Hardware
- 13. Software framework

Editorial Committee

L. Betev, P. Buncic, S. Chapeland, F. Cliff, P. Hristov, T. Kollegger, M. Krzewicki, K. Read, J. Thaeder, B. von Haller, P. Vande Vyvre

Physics requirement chapter: Andrea Dainese

ALICE ITS & O2 Asia | June 17, 2014 | Pierre Vande Vyvre

Chair

ALICE

Upgrade of the **ALICE** Experiment

ALICE

Design strategy

Iterative process: design, benchmark, model, prototype

ALICE ITS & O2 Asia | June 17, 2014 | Pierre Vande Vyvre

- Dataflow discrete event simulation implemented with OMNET++
 - FLP-EPN data traffic and data buffering
 - Network topologies (central switch; spine-leaf),
 - Data distribution schemes (time frames, parallelism)
 - Buffering needs
 - System dimensions
 - Heavy computing needs

Downscaling applied for some simulations:

- Reduce network bandwidth and buffer sizes
- Simulate a slice of the system
- System global simulation with ad-hoc program

OMNeT++

A Large Ion Collider Experiment

FLP-EPN Dataflow simulation

System scalability study

Configuration 40 Mbps 250x288

System scalability study

- System studied on a ¼ of the entire system and lower bandwidth to limit the simulation time
- System scales at up to 166 kHz of MB interactions

Data storage needs of the O² facility

ALICE ITS & O2 Asia | June 17, 2014 | Pierre Vande Vyvre

Detector Readout via Detector Data Links (DDLs)

Common Interface to the Detectors:

- DDL1 (2.125 Gbit/s)
- DDL2 (5.3125 Gbit/s)
- DDL3 (>=10 Gbit/s)
 - 10 Gbit Ethernet
 - PCle bus

More development of VHDL code still needed. Looking for more collaborators in this area. See presentation of F. Costa: "Firmware developments for the ALICE Run 2 and Run 3"

Conne

FLP and Network prototyping

- FLP requirements
 - Input 100 Gbit/s (10 x 10 Gbit/s)
 - Local processing capability
 - Output with ~20 Gbit/s
- Two network technologies under evaluation
 - 10/40 Gbit/s Ethernet
 - Infiniband FDR (56 Gbit/s)
 - Both used already (DAQ/HLT)
- Benchmark example
- Chelsio T580-LP-CR with TCP/UDP Offload engine
 1, 2 and 3 TCP streams, iperf measurements

CWG5: Computing Platforms

The Conversion factors

- Shift from 1 to many platforms
- Speedup of CPU Multithreading:
 - Task takes n1 seconds on 1 core, n2 seconds on x cores
 - → Speedup is n1/n2 for x cores, Factors are n1/n2 and x/1
 - With Hyperthreading: $n2^{\circ}$ seconds on x° threads on x cores. ($x^{\circ} \ge 2x$)
 - \rightarrow Will not scale linearly, needed to compare to full CPU performance.
 - Factors are n1 / n2' and x / 1 (Be carefull: Not x' / 1, we still use only x cores.)
- Speedup of GPU v.s. CPU:
 - Should take into account full CPU power (i.e. all cores, hyperthreading).
 - Task on the GPU might also need CPU resources.
 - Assume this occupies **y** CPU cores.
 - Task takes n3 seconds on GPU.
 - Speedup is n2'/n3, Factors are n2'/n3 and y/x. (Again x not x'.)
- How many CPU cores does the GPU save:
 - Compare to **y** CPU cores, since the GPU needs that much resources.
 - Speedup is n1 / n3, GPU Saves n1 / n3 y CPU cores.
 - \rightarrow Factors are **n1** / **n3**, **y** / **1**, and **n1** / **n3 y**.

Benchmarks: Track Finder, Track Fit, DGEMM (Matrix Multiplication – Synthetic)
 ALICE ITS & O2 Asia | June 17, 2014 | Pierre Vande Vyvre

CWG5: Computing Platforms Track finder

Nehalem 4-Core 3,6 GHz (Smaller Event than others)						
1 Thread	3921 ms		Factors:			
4 Threads	1039 ms		3,77 / 4			
12 Threads (x = 4, x ⁴ = 12)	816 ms		4,80 / 4			
Westmere 6-Core 3.6 GHz						
1 Thread	4735 ms		Factors:			
6 Threads	853 ms		5.55 / 6			
12 Threads (x = 4, x ⁴ = 12)	506 ms		9,36 / 6			
Dual Sandy-Bridge 2 * 8-Core 2 GHz						
1 Thread	4526 ms		Factors:			
16 Threads	403 ms		11,1 / 16			
36 Threads (x = 16, x [·] = 36)	320 ms		14,1 / 16			
Dual AMD Magny-Cours 2 * 12-Core 2,1 GHz						
36 Threads (x = 24, x [·] = 36)	495 ms					
3 CPU Cores + GPU – All Compared to Sandy Bridge System						
		Factor vs x' (Full	CPU)	Factor vs 1 (1 CPU Core)		
GTX580	174 ms	1,8 / 0,19		26 / 3 / 23		
GTX780	151 ms	2,11 / 0,19		30 / 3 / 27		
Titan	143 ms	2,38 / 0,19		32 / 3 / 29		
S9000	160 ms	2 / 0,19		28 / 3 / 25		
S10000 (Dual GPU with 6 CPU cores	85 ms	3,79 / 0,38		54/6/48 18		

ALICE | S10000 (Dual GPU with 6 CPU cores

Computing Platforms

ITS Cluster Finder

- Use the ITS cluster finder as optimization use case and as benchmark
- Initial version memory-bound
- Several data structure and algorithms optimizations applied

See the presentation of Prof. T. Achalakul about benchmarking

More benchmarking of detector-specific code still needed. Looking for more collaborators in this area. See presentation of S. Chapeland "Benchmarks for the ITS cluster finder"

Data Storage

80 GB/s over ~1250 nodes

Option 1: SAN (currently used in the DAQ) Centralized pool of storage arrays, Dedicated network

5 racks (same as today) would provide 40 PB

Option 2: DAS Distributed data storage 1 or a few 10 TB disks in each node

Software Framework

- Multi-platforms
- Multi-applications
- Public-domain software

Software Framework Development

- Design and development of a new modern framework targeting Run3
- Should work in Offline and Online environment
 - Has to comply with O² requirements and architecture
- Based on new technologies
 - Root 6.x, C++11
- Optimized for I/O
 - New data model
- Capable of utilizing hardware accelerators
 - FPGA, GPU, MIC...
- Support for concurrency and distributed environment
- Based on ALFA common software foundation developed jointly between ALICE & GSI/FAIR

Large development in progress. Looking for more collaborators in this area. See presentation of P. Hristov: "Software framework development"

Software Framework Development ALICE + FAIR = ALFA

- Expected benefits
 - Development cost optimization
 - Better coverage and testing of the code
 - Documentation, training and examples.
 - ALICE : work already performed by the FairRoot team concerning features (e.g. the continuous read-out), which are part of the ongoing FairRoot development.
 - FAIR experiments : ALFA could be tested with real data and existing detectors before the start of the FAIR facility.
- The proposed architecture will rely:
 - A dataflow based model
 - A process-based paradigm for the parallelism
 - Finer grain than a simple match 1 batch on 1 core
 - Coarser grain than a massively thread-based solution

- Test set-up
 - 8 machines
 - Sandy Bridge-EP, dual E5-2690 @ 2.90GHz, 2x8 hw cores 32 threads, 64GB RAM
 - Network
 - 4 nodes with 40 G Ethernet, 4 nodes with 10 G Ethernet
- Software framework prototype by members of DAQ, HLT, Offline, FairRoot teams ٠
 - Data exchange messaging system
 - Interfaces to existing algorithmic code from offline and HLT

ALICE

MC Reference TPC map

Adjusted accounting for current luminosity Calibration/reconstruction flow

Control, Configuration and Monitoring

Large computing farm with many concurrent activies Software Requirements Specifications Tools survey document Tools under test

- Monitoring: Mona Lisa, Ganglia, Zabbix
- Configuration: Puppet, Chef

System design and evaluation of several tools in progress. Looking for more collaborators in this area. See presentation of V. Chibante "Control, Configuration and Monitoring"

O² Project Institutes

- Institutes (contact person, people involved)
 - FIAS, Frankfurt, Germany (V. Lindenstruth, 8 people)
 - GSI, Darmstadt, Germany (M. Al-Turany and FairRoot team)
 - IIT, Mumbay, India (S. Dash, 6 people)
 - IPNO, Orsay, France (I. Hrivnacova)
 - IRI, Frankfurt, Germany (Udo Kebschull, 1 PhD student)
 - Jammu University, Jammu, India (A. Bhasin, 5 people)
 - Rudjer Bošković Institute, Zagreb, Croatia (M. Planicic, 1 postdoc)
 - SUP, Sao Paulo, Brasil (M. Gameiro Munhoz, 1 PhD)
 - University Of Technology, Warsaw, Poland (J. Pluta, 1 staff, 2 PhD, 3 students)
 - Wiegner Institute, Budapest, Hungary (G. Barnafoldi, 2 staffs, 1 PhD)
 - CERN, Geneva, Switzerland (*P. Buncic,* 7 staffs and 5 students or visitors) (*P. Vande Vyvre,* 7 staffs and 2 students)
- Looking for more groups and people
 - Need people with computing skills and from detector groups
- Active interest from (contact person, people involved)
 - Creighton University, Omaha, US (M. Cherney, 1 staff and 1 postdoc)
 - KISTI, Daejeon, Korea
 - KMUTT (King Mongkut's University of Technology Thonburi), Bangkok, Thailand (*T. Achalakul, 1 staff and master students*)
 - KTO Karatay University, Turkey
 - Lawrence Berkeley National Lab., US (R.J. Porter, 1 staff and 1 postdoc)
 - LIPI, Bandung, Indonesia
 - Oak Ridge National Laboratory, US (K. Read, 1 staff and 1 postdoc)
 - Thammasat University, Bangkok, Thailand (K. Chanchio)
 - University of Cape Town, South Africa (T. Dietel)
 - University of Houston, US (A. Timmins, 1 staff and 1 postdoc)
 - University of Talca, Chile (S. A. Guinez Molinos, 3 staffs)
 - University of Tennessee, US (K. Read, 1 staff and 1 postdoc)
 - University of Texas, US (C. Markert)
 - Wayne State University, US (C. Pruneau)

ALICE

Budget

ltem	Cost
First Level Processing Nodes (FLP)	800 kCHF
Readout-Receiver Cards (RORC)	900 kCHF
Event Processing Nodes (EPN)	4100 kCHF
Infrastructure	1300 kCHF
Networks	800 kCHF
Servers	500 kCHF
Storage	600 kCHF
Offline	500 kCHF
Total	9500 kCHF

- ~80% of budget covered
- Contributions possible by cash or in-kind
- Continuous funding for GRID assumed

Future steps

- A new computing system (O²) should be ready for the ALICE upgrade during the LHC LS2 (currently scheduled in 2018-19).
- The ALICE O² R&D effort has started in 2013 and is progressing well but additional people and expertise are still required in several areas:
 - VHDL code for links and computer I/O interfaces
 - Detector code benchmarking
 - Software framework development
 - Control, configuration and monitoring of the computing farm
- The project funding is not entirely covered.
- Schedule
 - June '15 : submission of TDR, finalize the project funding
 - '16 '17: technology choices and software development
 - June '18 June '20: installation and commissioning