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ALICE O2 

 ALICE detector will be upgraded in 2018 

 Handle 50 kHz Pb-Pb collisions 

 Higher data throughput from the detector (1 TB/s) 

 Data is processed both Online and Offline (O2) 

 

 Currently, in search of a suitable computing platform and a 
good scheduling framework. 

 



Computing Process 



Computing Nodes 

 FLP (250 nodes) 

 Perform reduction on data fragments 

 Decrease the size by 5x -10x 

 EPN (1250 nodes) 

 Perform Calibration, Event Reconstruction, Data 
Compression 

 Decrease to size by 2x 



KMUTT Involvement 

 A research team from the computer engineering department at KMUTT has 
planned a collaborative research framework under the ALICE O2 project. 

 

 Goal: select the suitable computing platforms by optimizing the size and the cost 
of the online farm. 

 

 The collaboration began earlier in 2014 
 Two graduate students have started working on the project (Mr. Boonyarit 

Changaival, Miss Sarunya Pumma) 
 CERN Mentor has been assigned (Mr. Sylvian Chapeland) 



Two of our sub-projects under ALICE O2 

 Assessing the performance of different types of hardware and 
programming models. 

 Pixel Cluster Finding on GPU 

 

 A dynamic scheduling framework for online data processing 

 Select computing nodes inside the Event Processing Nodes (EPNs) 
cluster  

 Delegate a large number of jobs from the First Level Processors (FLPs)  

 

 Both research works are still in an early stage.  

 

 

 

 

 



Pixel Cluster Finder on GPU 



Pixel Cluster Finder 

 Purpose 

 Identify groups of adjacent pixel hits 
 360 hits per chip (average) 

 430 chips in the detector 

 Compute their center of gravity 

 Input 

  A list of 2D hits coordinates in pixel row and column 

 Output 

 A list of clustere 2D coordinates in millimeters from chip center 
 Average of 60 clusters per chip 



ITS Detector & Pixel Cluster 

Pixel Chip 

Pixel Cluster 

5 steps in the Pixel Cluster Finder algorithm 
Pre-grouping, Assigning Cluster, Joining Cluster, Cluster Summation, Calculating Center 

 



Pixel Cluster Finder on Multiple Platforms 

 Exploit the multicore-architecture 

 Attempt on the Xeon Phi architecture 

 Initial works on the Nvidia GPUs (By KMUTT) 

 Redesign the algorithm to fit the GPU’s memory hierarchy 

 Evaluate the performance on a few GPU systems 

 Optimize the performance on the GPU 



Performance 

 Initially tested on GTX 780 with the Nvidia Insight profiler 

 High occupancy in most kernel (> 90%) 

 Very low on serialized portion 

 Process around 30 events in 1 second 

 Further Tuning 

 Modify the data structure to better suit the GPU architecture 

 Use CUDA specific commands for efficient memory allocations 

 Performance evaluation on the Tesla K20 or K40 system 



A scheduling Framework for 
the Online Processing Farm 



A Scheduling Framework 

 A scheduling framework for distributing tasks from FLPs to EPNs 

 Optimize 2 objectives 

 Makespan 

 Energy Consumption 

 The work had been presented in the poster session at PASC 14 
conference in Zurich during 2-3 June, 2014. 



Challenges 

 Job runtime estimation 

 Must be accurate 

 Fast and efficient scheduler is needed 

 Delays cause processing bottleneck and increase the buffer 
storage needed on the FLP cluster. 

 



Scheduler Functions 

 Runtime estimation 

 Complexity analysis 

 Regression model 

 

 Scheduling approach 

 Round-Robin 
 Meta-heuristic for multiple objectives optimization 



Runtime Estimation (1) 

Application with  
source code 

Determine 
application’s 
complexity 

Get runtimes of an 
application with 

different set of inputs   

Run regression 
analysis 

Runtimes on 
machines 

 Known Complexity (source code is available) 



Runtime estimation (2) 

? 

Black box  
application 

Profile sampling Classification model  

Runtime estimation 
models 

Type of Berkley’s dwarf 

Runtimes on 
machines 

Set of Profiles 

 Unknown Complexity (source code is not available) 

Berkley’s dwarf 



Runtime Prediction: Unknown profile 

Profile Collecting Process  

 Tools 

 MICA - Microarchitecture-Independent Characterization of 
Applications 

 Machine architecture independent  

 Compiler dependent 

 Characterize the profile of process using 8 metrics  
 Perf – Profiler tool for Linux 2.6+ 

 Machine and compiler dependent 

 Collect 4 software events 



 List of profiles 
 Probability of a register dependence distance <= 16 
 Branch predictability of per-address, global history table (PAg) prediction- by-partial-

matching (PPM) predictor 
 Percentage of multiply instructions 
 Data stream working-set size at 32-byte block level 
 Probability of a local load stride = 0  
 Probability of a global load stride <= 8  
 Probability of a local store stride <= 8 
 Probability of a local store stride <= 4,096 
 CPU clock 
 Task clock 
 Page faults 
 Context switches 

 

MICA 

Perf 

Runtime Prediction: Unknown profile 

Profile Collecting Process  



 Classify the unknown application into a type of Berkley’s dwarf 

 13 Berkley’s dwarfs – represent characteristics of the scientific applications  
(i.e. dense linear algebra, sparse linear algebra, and n-body methods) 

 Train the model 

 Run the benchmark of the Berkley’s dwarfs on the 1-core computer with 
Ubuntu operating system 
 NAS Parallel Benchmarks (from NASA) 

 Rodinia (from Virginia Tech) 

 TORCH (from University of California) 

 Collect data records (use only MICA metrics) 

Compiles with gcc, g++ 

Runtime Prediction: Unknown profile 

Classification Model 



 Train the model 
 Use C4.5 algorithm to build the decision tree 

 Validate the model 
 Using 10-fold cross validation 

 The accuracy is above 96.89% 

 

Runtime Prediction: Unknown profile 

Classification Model 



 Compute the estimated runtime of the application on a specific 
machine 

 There will be 13 models for each type of machines  

 Construct the mathematical models 
 Collect the profiles of each dwarf on machines  

 Use ABC algorithm (meta-heuristic algorithm) to find the appropriate 
model 

 

 

Runtime Prediction: Unknown profile 

Runtime Estimation Model 



 Sample the profiles of 16 benchmarks 

 Compare the predicted runtimes to  
the actual runtimes 

 Error (%) 

 Minimum 8% 

 Maximum 30% 
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Results on Runtime Prediction 



Initial Results 

 Testing the model 

 99% R-squared 

 Less than 10% error (2.28% average) 

 Input Size (Mb) Predicted Runtime (s) Actual Runtime (s) Error (%) 
100 12.06 11.93 1.09 
200 19.19 18.79 2.13 
300 26.32 25.79 2.06 
400 33.45 36.22 7.65 
500 40.58 39.95 1.58 
600 47.71 46.95 1.62 
700 54.84 54.06 1.44 
800 61.97 62.23 0.42 



Job Scheduling 

 Meta-Heuristic Algorithm (Artificial Bee Colony) 

 Objective Score 

 

 

 

 

 α is the significant level of the objective 

Score= (a ´makespan)+ (1-a)´(Energy)

makespan = max(CompletionTimen +WaitingTimem)

Energy = Energyidle +Energyswitch +EnergyActive



Artificial Bee Colony 

 Mimicking the behaviors of honeybees in finding food sources 

 Each feasible solution represents a food source. 
 The quality of a food source is the “fitness value” 
 The process of bee seeking for good food sources is used to fine 

the optimal solution. 

 There are 3 types of computational agents 
 Employed Bee: Investigated the assigned food sources and 

share information 
 onlooker Bee: make a decision to choose a food source 
 Scout Bee: search randomly for new food sources 

 

 

 

 
 

 

 

 

 

 
 



Initial Experiments 

 2 situations were simulated 
 Initial Phase: All machines are available 
 Saturated Phase: Only some machine available 
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Initial Result (1) 

 Initial Phase 

 Round Robin has better makespan in initial Phase 
 Use 2 times more energy 

Task, Machine 
Round-Robin Artificial Bee Colony 

Makespan Energy Makespan Energy 

2000,1250 417 140622 458 52859 

1750,1250 406 123344 426 45727 

1500,1250 406 106171 387 38321 

1250,1250 210 88138 415 32738 

1000,1250 210 70012 387 28074 

750,1250 210 52134 300 18184 

500,1250 210 34382 253 11539 



Initial Result (2) 

 Saturated Phase 

 ABC show 5-10% improvement in makespan over Round-Robin 

 ABC’s Energy consumption is 50% lower than Round-Robin 

 
Task, Machine 

Round-Robin Artificial Bee Colony 

Makespan Energy Makespan Energy 

2000,1250 417 140622 458 52859 

2000,1000 407 141982 517 54222 

2000,750 578 142283 614 55807 

2000,500 751 141962 670 57717 

2000,250 1422 141101 1350 90865 

 



Work in Progress 

 More runtime estimation on several other algorithms 

 Fine tuning the scheduling algorithm 

 Increase the speed by simplifying the ABC algorithm 

 Improve the schedule quality 
 Explored other scheduling algorithms used in grid schedulers  

 Prepare for other constraints and policies of the online processing system 
 Data locality 

 hardware requirement 

 Etc. 

 Implement the scheduler for ALICE O2 



Initial Outputs 

 The work on computing platform assessment has been presented at RT’14 
in Nara, Japan.  
 Chapeland S., B. Changaival, and T. Achalakul, “Benchmarks Based on a Pixel Cluster 

Finder Algorithm for Future ALICE Online Computing Upgrade”, The 19th Real-time 
Conference (RT’14), Nara, Japan, May 2014.  

 

 The work on scheduling framework initial design has been proposed in a 
poster session of PASC14 in Zurich.   
 Changaival B., S. Pumma, T. Achalakul, and S. Chapeland, “A scheduling Methodology 

for Online Data Processing” The Platform for Advanced Scientific Computing 
Conference (PASC14), Zurich, Switzerland, June 2014.  

 



Activities for Summer 2014 

 Mr. Boonyarit Changaival and Ms.Sarunya Pumma  delivered the presentation at PASC14 
in Zurich. 

 Both students is spending 2 months working at CERN, Switzerland.  

 

 Dr.Tiranee Achalakul will visit CERN during July 2014. 

 

 At the end of the internship period, if mature enough, a full paper should be written to 
describe the first phase of our research works.  
 

 Three more graduate students are being added to the team by the end of the summer. 
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Summer Program at CERN 
Geneva, Switzerland 

4 June – 8 August 2014 


