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ALICE O2 

 ALICE detector will be upgraded in 2018 

 Handle 50 kHz Pb-Pb collisions 

 Higher data throughput from the detector (1 TB/s) 

 Data is processed both Online and Offline (O2) 

 

 Currently, in search of a suitable computing platform and a 
good scheduling framework. 

 



Computing Process 



Computing Nodes 

 FLP (250 nodes) 

 Perform reduction on data fragments 

 Decrease the size by 5x -10x 

 EPN (1250 nodes) 

 Perform Calibration, Event Reconstruction, Data 
Compression 

 Decrease to size by 2x 



KMUTT Involvement 

 A research team from the computer engineering department at KMUTT has 
planned a collaborative research framework under the ALICE O2 project. 

 

 Goal: select the suitable computing platforms by optimizing the size and the cost 
of the online farm. 

 

 The collaboration began earlier in 2014 
 Two graduate students have started working on the project (Mr. Boonyarit 

Changaival, Miss Sarunya Pumma) 
 CERN Mentor has been assigned (Mr. Sylvian Chapeland) 



Two of our sub-projects under ALICE O2 

 Assessing the performance of different types of hardware and 
programming models. 

 Pixel Cluster Finding on GPU 

 

 A dynamic scheduling framework for online data processing 

 Select computing nodes inside the Event Processing Nodes (EPNs) 
cluster  

 Delegate a large number of jobs from the First Level Processors (FLPs)  

 

 Both research works are still in an early stage.  

 

 

 

 

 



Pixel Cluster Finder on GPU 



Pixel Cluster Finder 

 Purpose 

 Identify groups of adjacent pixel hits 
 360 hits per chip (average) 

 430 chips in the detector 

 Compute their center of gravity 

 Input 

  A list of 2D hits coordinates in pixel row and column 

 Output 

 A list of clustere 2D coordinates in millimeters from chip center 
 Average of 60 clusters per chip 



ITS Detector & Pixel Cluster 

Pixel Chip 

Pixel Cluster 

5 steps in the Pixel Cluster Finder algorithm 
Pre-grouping, Assigning Cluster, Joining Cluster, Cluster Summation, Calculating Center 

 



Pixel Cluster Finder on Multiple Platforms 

 Exploit the multicore-architecture 

 Attempt on the Xeon Phi architecture 

 Initial works on the Nvidia GPUs (By KMUTT) 

 Redesign the algorithm to fit the GPU’s memory hierarchy 

 Evaluate the performance on a few GPU systems 

 Optimize the performance on the GPU 



Performance 

 Initially tested on GTX 780 with the Nvidia Insight profiler 

 High occupancy in most kernel (> 90%) 

 Very low on serialized portion 

 Process around 30 events in 1 second 

 Further Tuning 

 Modify the data structure to better suit the GPU architecture 

 Use CUDA specific commands for efficient memory allocations 

 Performance evaluation on the Tesla K20 or K40 system 



A scheduling Framework for 
the Online Processing Farm 



A Scheduling Framework 

 A scheduling framework for distributing tasks from FLPs to EPNs 

 Optimize 2 objectives 

 Makespan 

 Energy Consumption 

 The work had been presented in the poster session at PASC 14 
conference in Zurich during 2-3 June, 2014. 



Challenges 

 Job runtime estimation 

 Must be accurate 

 Fast and efficient scheduler is needed 

 Delays cause processing bottleneck and increase the buffer 
storage needed on the FLP cluster. 

 



Scheduler Functions 

 Runtime estimation 

 Complexity analysis 

 Regression model 

 

 Scheduling approach 

 Round-Robin 
 Meta-heuristic for multiple objectives optimization 



Runtime Estimation (1) 

Application with  
source code 

Determine 
application’s 
complexity 

Get runtimes of an 
application with 

different set of inputs   

Run regression 
analysis 

Runtimes on 
machines 

 Known Complexity (source code is available) 



Runtime estimation (2) 

? 

Black box  
application 

Profile sampling Classification model  

Runtime estimation 
models 

Type of Berkley’s dwarf 

Runtimes on 
machines 

Set of Profiles 

 Unknown Complexity (source code is not available) 

Berkley’s dwarf 



Runtime Prediction: Unknown profile 

Profile Collecting Process  

 Tools 

 MICA - Microarchitecture-Independent Characterization of 
Applications 

 Machine architecture independent  

 Compiler dependent 

 Characterize the profile of process using 8 metrics  
 Perf – Profiler tool for Linux 2.6+ 

 Machine and compiler dependent 

 Collect 4 software events 



 List of profiles 
 Probability of a register dependence distance <= 16 
 Branch predictability of per-address, global history table (PAg) prediction- by-partial-

matching (PPM) predictor 
 Percentage of multiply instructions 
 Data stream working-set size at 32-byte block level 
 Probability of a local load stride = 0  
 Probability of a global load stride <= 8  
 Probability of a local store stride <= 8 
 Probability of a local store stride <= 4,096 
 CPU clock 
 Task clock 
 Page faults 
 Context switches 

 

MICA 

Perf 

Runtime Prediction: Unknown profile 

Profile Collecting Process  



 Classify the unknown application into a type of Berkley’s dwarf 

 13 Berkley’s dwarfs – represent characteristics of the scientific applications  
(i.e. dense linear algebra, sparse linear algebra, and n-body methods) 

 Train the model 

 Run the benchmark of the Berkley’s dwarfs on the 1-core computer with 
Ubuntu operating system 
 NAS Parallel Benchmarks (from NASA) 

 Rodinia (from Virginia Tech) 

 TORCH (from University of California) 

 Collect data records (use only MICA metrics) 

Compiles with gcc, g++ 

Runtime Prediction: Unknown profile 

Classification Model 



 Train the model 
 Use C4.5 algorithm to build the decision tree 

 Validate the model 
 Using 10-fold cross validation 

 The accuracy is above 96.89% 

 

Runtime Prediction: Unknown profile 

Classification Model 



 Compute the estimated runtime of the application on a specific 
machine 

 There will be 13 models for each type of machines  

 Construct the mathematical models 
 Collect the profiles of each dwarf on machines  

 Use ABC algorithm (meta-heuristic algorithm) to find the appropriate 
model 

 

 

Runtime Prediction: Unknown profile 

Runtime Estimation Model 



 Sample the profiles of 16 benchmarks 

 Compare the predicted runtimes to  
the actual runtimes 

 Error (%) 

 Minimum 8% 

 Maximum 30% 
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Results on Runtime Prediction 



Initial Results 

 Testing the model 

 99% R-squared 

 Less than 10% error (2.28% average) 

 Input Size (Mb) Predicted Runtime (s) Actual Runtime (s) Error (%) 
100 12.06 11.93 1.09 
200 19.19 18.79 2.13 
300 26.32 25.79 2.06 
400 33.45 36.22 7.65 
500 40.58 39.95 1.58 
600 47.71 46.95 1.62 
700 54.84 54.06 1.44 
800 61.97 62.23 0.42 



Job Scheduling 

 Meta-Heuristic Algorithm (Artificial Bee Colony) 

 Objective Score 

 

 

 

 

 α is the significant level of the objective 

Score= (a ´makespan)+ (1-a)´(Energy)

makespan = max(CompletionTimen +WaitingTimem)

Energy = Energyidle +Energyswitch +EnergyActive



Artificial Bee Colony 

 Mimicking the behaviors of honeybees in finding food sources 

 Each feasible solution represents a food source. 
 The quality of a food source is the “fitness value” 
 The process of bee seeking for good food sources is used to fine 

the optimal solution. 

 There are 3 types of computational agents 
 Employed Bee: Investigated the assigned food sources and 

share information 
 onlooker Bee: make a decision to choose a food source 
 Scout Bee: search randomly for new food sources 

 

 

 

 
 

 

 

 

 

 
 



Initial Experiments 

 2 situations were simulated 
 Initial Phase: All machines are available 
 Saturated Phase: Only some machine available 
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Initial Result (1) 

 Initial Phase 

 Round Robin has better makespan in initial Phase 
 Use 2 times more energy 

Task, Machine 
Round-Robin Artificial Bee Colony 

Makespan Energy Makespan Energy 

2000,1250 417 140622 458 52859 

1750,1250 406 123344 426 45727 

1500,1250 406 106171 387 38321 

1250,1250 210 88138 415 32738 

1000,1250 210 70012 387 28074 

750,1250 210 52134 300 18184 

500,1250 210 34382 253 11539 



Initial Result (2) 

 Saturated Phase 

 ABC show 5-10% improvement in makespan over Round-Robin 

 ABC’s Energy consumption is 50% lower than Round-Robin 

 
Task, Machine 

Round-Robin Artificial Bee Colony 

Makespan Energy Makespan Energy 

2000,1250 417 140622 458 52859 

2000,1000 407 141982 517 54222 

2000,750 578 142283 614 55807 

2000,500 751 141962 670 57717 

2000,250 1422 141101 1350 90865 

 



Work in Progress 

 More runtime estimation on several other algorithms 

 Fine tuning the scheduling algorithm 

 Increase the speed by simplifying the ABC algorithm 

 Improve the schedule quality 
 Explored other scheduling algorithms used in grid schedulers  

 Prepare for other constraints and policies of the online processing system 
 Data locality 

 hardware requirement 

 Etc. 

 Implement the scheduler for ALICE O2 



Initial Outputs 

 The work on computing platform assessment has been presented at RT’14 
in Nara, Japan.  
 Chapeland S., B. Changaival, and T. Achalakul, “Benchmarks Based on a Pixel Cluster 

Finder Algorithm for Future ALICE Online Computing Upgrade”, The 19th Real-time 
Conference (RT’14), Nara, Japan, May 2014.  

 

 The work on scheduling framework initial design has been proposed in a 
poster session of PASC14 in Zurich.   
 Changaival B., S. Pumma, T. Achalakul, and S. Chapeland, “A scheduling Methodology 

for Online Data Processing” The Platform for Advanced Scientific Computing 
Conference (PASC14), Zurich, Switzerland, June 2014.  

 



Activities for Summer 2014 

 Mr. Boonyarit Changaival and Ms.Sarunya Pumma  delivered the presentation at PASC14 
in Zurich. 

 Both students is spending 2 months working at CERN, Switzerland.  

 

 Dr.Tiranee Achalakul will visit CERN during July 2014. 

 

 At the end of the internship period, if mature enough, a full paper should be written to 
describe the first phase of our research works.  
 

 Three more graduate students are being added to the team by the end of the summer. 
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Summer Program at CERN 
Geneva, Switzerland 

4 June – 8 August 2014 


