
Efficient Live Checkpointing
Mechanisms for computation and

memory-intensive VMs in a data center

Kasidit Chanchio
Vasabilab

Dept of Computer Science,
Faculty of Science and Technology,

Thammasat University
http://vasabilab.cs.tu.ac.th

ALICE O2 Presentation

Outline

• Introduction and problems

• Checkpointing mechanisms

• Our Proposal

– Time-bound Live Checkpointing (TLC)

– A Scalable Checkpointing Technique

• Conclusion and Future Works

Introduction

• Today, applications require more CPUs and RAM
– Big Data Analysis
– Large Scale simulation
– Scientific Computation
– Legacy Applications, etc.

• Cloud computing has become a common
platform for large-scale computations
– Amazon offers VM with 8 vcpus and 68.4GiB Ram
– Google offers VM with 8 vcpus and 52GB Ram

• Large-scale applications can have long exe time
– In case of failures, users must restart apps from

beginning

How do we handle
server crashes?

• Checkpointing: The state of long running apps should
be saved regularly so that the computation can be
recovered from the last saved state if failures occur

• It usually take a long time to save state of CPU and
memory-intensive apps
– Downtime could also be high

• Parallel File System (PFS) can
be a bottleneck and slowdown
the entire system when saving
state of multiple nodes
simultaneously

From

What is Checkpointing?

• Periodically Save Computation State to
Persistent Storage for recovery if failures occur

Linux/Hardware

VM-Level

OS-Level

User Level

Application-Level Modify App

Link with
Chkpt library

Modify Kernel

Modify
Hypervisor

More works on
development

Know exactly
what to save

Depend on exe
environments

Don’t have to
recompile app

Depend on
Kernel version

Can reuse
executable

Must handle
all VM state

Transparent to
Guest OS/App

VM Checkpointing

• Highly Transparent to Guest OS & Applications

• Save all apps and execution environments

• Techniques:

– Stop & Save [kvm]

– Copy on Write & Chkpt Thread [vmware ESXi]

– Copy to Memory Buffer [TLC 2009]

– Live replication to a backup host [Remus]

– Time-bound Live Checkpointing [TLC]

1. Stop and Save

VM

Hypervisor

Local or
Shared
Storage

• Stop the VM to save state
to disk

• Long Downtime and
Checkpoint time

• Saving to shared storage
is necessary if want to
restore on a new host

• Saving to shared storage
cause higher checkpoint
time

2. Copy on Write

Hypervisor

VM

Local or
Shared
Storage

• Hypervisor create a thread
to scan memory and save
unmodified pages

• If VM modifies a page,
hypervisor copy the original
contents of that page to
directly to disk

• Can cause high downtime if
large number of pages are
modified in a short period
of time

One memory
scan

3. Memory Buffer

Hypervisor

VM

Memory

Local/
Shared
Storage

• Hypervisor create a
thread to scan memory
and save unmodified
pages

• Hypervisor stop VM to
copy dirty pages to a
memory buffer and write
the buffer to disk later
when checkpointing done

• Need large amount of
memory One memory

scan

4. Replication

Hypervisor

VM Source
Host

Backup
Host

Memory

Local/
Shared
Storage

• Hypervisor stop VM
periodically to copy
and sync state
information with a
backup host

• Great for High
Availability

• Need to reserve
resource on a backup
host for the VM
throughout its lifetime

Time-bound Live Migration

• TLC is based on the Time-bound, Thread-based
Live Migration (TLM) [CCgrid 2014]

• Basic Principles of TLM:

– TLM finishes within a bounded period of time,i.e.,
one round of memory scan

– Performs with best efforts to minimize downtime

– Dynamically adjust VM computation speed to
reduce downtime by balancing dirty page
generation rate and available data transfer
bandwidth

TLM Design

VM State Transfer

• Add two threads to
source hypervisor
– Mtx: scan entire ram

– Dtx: new dirty pages

• Use two receiver
threads to dest

Optimization

• Manage Resource
Allocation and
handle downtime
minimization

VM State Transfer

Downtime reduction

Kvm Migration and Downtime
(over a 10 Gbps network)

kvm-1.x-<tolerable downtime>
1. Hard to find right
 tolerable downtime

2. Same param may cause very different
migration behaviors

TLM

TLM:Kernel MG Class D

• 36GB VM Ram, 27.3GB WSS

• Low locality, 600,000 pages
can be updated in one second
but pages are transfer no
more than 100,000 page/sec

• Reasonable Bandwidth

(1) (2)

(3)

1 Gbps
network

Time-bound Live
Checkpointing (TLC)

• Based on TLM
• Send state evenly to

set of Distributed
Memory Servers

• Let each DMS saves
the state to local
disk when finish
Stage 3

• Each DMS can write
state to PFS later

• Perf: migtime + 1/3
of saving the entire
VM state to local
disk

Time-bound Live
Checkpointing (TLC)

• Based on TLM

• Each DMS load state
info from local disk

• When the loading is
done, send data
simultaneously to the
restored VM

• The restored VM put the
transmitted state info at
the right place and
resume computation

• Perf: 1/3 of traditional
VM restoration time

How do we make
TLC checkpointing scale?

• Define a set of host, namely a circle

• Let each host in the same circle takes turn to
checkpoint while the rests help saving its state

Scalable Checkpointing

• Put each host in a circle into a separate group

Scalable Checkpointing
• VM on host in the same group chkpt at the same time

VMs in the same group could be communicating with one another

Scalable Checkpointing
• VM on host in the same group chkpt at the same time

Scalable Checkpointing
• Every DMS on a helping host save state to local disk

Scalable Checkpointing
• DMS can later saves state to PFS

Scalable Checkpointing
• Or, DMS can collaborate to replicate state information

Conclusion
and Future Works

• We propose a Time-bound Live Checkpointing (TLC)
mechanism
– Finish in a bound time period (proportional to Ram size)
– Provide best effort downtime minimization
– Reduce dirty page generation rate to minimize downtime

• We propose using a set of the Distributed Memory
Server to speed up checkpointing time

• We propose a method to perform checkpointing at a
large scale

• We have implemented TLC and DMS and conducted
preliminary experiments

• Next, we will evaluate the scalable checkpointing ideas
• Thank you. Questions?

BACKUP

Experimental Setup

• Each VM uses 8 vcpu

• NAS Parallel Benchmark v3.3
– OpenMP Class D (and MPI

Class D in paper)

• VM migrate from source to
dest computer

• Two separate networks:
– 10 Gbps for migration

– 1 Gbps for iperf

• Iperf fires from supporting
computer

• VM disk image of migrating
VM is on NFS

TLM Performance:
Kernel IS Class D

• 36GB VM Ram, 34.1GB WSS

• Update large amount of pages continuously

• VM page transfer rate is about half of dirty page generation

• The migration tome of TLM and TLM.1S are close

• TLM downtime is about 0.68 of that of TLM.1S

