
Benchmarks for the ITS cluster finder

Sylvain Chapeland – ALICE DAQ / O2

ALICE ITS upgrade and O2 Asian Workshop 2014 | 17.06.2014

Outline

• ALICE upgrade
• ITS cluster finder algorithm
• Implementation and optimization

Tools, platforms, benchmarks

• Plans

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 2

ALICE upgrade

• O2 is in design phase

• Benchmark required for estimation of computing resources
needs and possible hardware

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 3

250 First Level Processors (readout) :
Sub-event processing, ~5x compression

1250 Event Processing Nodes:
Global processing and event building
(synchronous and asynchronous)
Raw data discarded

Benchmarks for ALICE upgrade

• Several ongoing activities (e.g. in CWG5)
– raw benchmarks (cpu, memory, etc)
– Reuse existing code (e.g. extensive experience with TPC tracking on

GPUs by ALICE HLT, used in production)

• We present here one case study, with following goals:

– Find a realistic workload
– Implement the algorithm with various hw/sw
– Get performance results
– Get experience with the tools and platforms

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 4

ALICE ITS detector upgrade

• Inner Tracking System, silicon detector
– Chip size 1650x500 pixels (inner layer)
– 24120 chips in 7 layers

• Readout 50-400 kHz
• 40GB/s for Pb-Pb@50kHz

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 5

Example simulated event on a chip

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 6

Mostly empty

Simulated event (close-up)

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 7

Each white pixel is a hit, and a group of adjacent hits is a cluster

ITS cluster finder algorithm

• Simple to understand, no physics involved
– Identify group of adjacent pixels
– Compute their center of gravity

• Simple data set

– Input: list of hits coordinates
int[], ordered by (row,column) in detectors electronics.
In average 360 hits per chip, i.e. ~3kB

– Output: list of cluster coordinates
float[], in millimeters from chip center). In average 60
clusters per chip, i.e. ~0.5 kB

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 8

ITS cluster finder algorithm

• Good candidate for benchmark

– This is a good representative of one demanding type of computation
to be done online, similar things done in other detectors

– Simulated data available for input
– Reference algorithm already available in the offline framework for

output crosscheck
– Can be easily re-implemented standalone, no external libs required
– Fine level of parallelism for free (event or chip level)
– Small data size should fit most architectures

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 9

C implementation for x86

• Loop over (ordered) list of hits
• Create and assign cluster ID

– We keep current and previous pixel line in memory, with id of cluster
– Neighborhood hits check by array indexing + bitmask (no loop)

• Group clusters
• Compute CoG

• No threading in “processEvent” code, rather 1 thread per

event basis or per module
• -O3 flag with gcc 4.4.7 & icc 14.0.2

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 10

Development cycle

• Ref data: 50 events 430 modules
• Implement as simple as possible

– started with plain C

• Verify validity of result
– Several iterations needed
– Some nasty use-cases
– Added PNG debug function

• Optimize 1 thread
• Try multithread (1 thread per event/module)

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 11

Profiling
• Valgrind / callgrind

– Good enough to find hotspots
– Readily available
– Heavy execution time
– Kcachegrind GUI (kdesdk RPM) to check results

• Vtune
– Ampl-xe gui nice, extensive threading support
– Kernel module easy to recompile
– Need root access to load module
– Disable NMI: echo 0 > /proc/sys/kernel/nmi_watchdog
– Fine details in results, many counters/metrics
– Need most recent HW for all perf counters

• For both: easy to isolate code to be measured
• Missing tool: bookkeeping (run test, keep ref code, document findings and results)

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 12

#include <valgrind/callgrind.h>
CALLGRIND_START_INSTRUMENTATION
 myCode()
CALLGRIND_STOP_INSTRUMENTATION

#include <ittnotify.h>
__itt_resume()
 myCode()
__itt_pause()

Callgrind / kcachegrind

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 13

96.5% in this loop!

Vtune – amplxe-gui

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 14

Vtune – amplxe-gui

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 15

Code optimization (1 thread)

• Hotspot analysis shows that most time is spent in clearing index line
 (id of cluster for each pixel in current line)

• Optimization

1. Dummy loop
2. + Don’t reset full line (keep max index updated)
3. Use memset /* works only because (int)-1 = char[4] {-1,-1,-1,-1} */
4. Use 128bits intrinsics => movdqa
5. + Manual loop unroll (8)
6. + Pack data manually (1 coord per int)
7. + Pack data manually (2 coords per int)
8. + Pack data manually (3 coords per int)

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 16

for (int k=0;k<szX;k++) {
 newLineClusters[k]=-1;
}

#include <immintrin.h>
__m128i v_fastinit;
v_fastinit=_mm_set_epi32(-1,-1,-1,-1);
for (int k=0;k<maxX/4+1;k++) {
 ((__m128i *)(newLineClusters))[k]=v_fastinit;
} 0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8

icc ev/s

gcc ev/s

Performance, events per second
1 thread, E5 2665 2.4GHz

Code optimization (1 thread)
• Observed so far:

– Pack data = improve performance, because algorithm is memory I/O bound
– Importance of data structs (e.g. aligned to use vector instructions)
– Assembly useful (e.g. to check the good AVX instructions are used in the end)
– Some obvious and simple things might still be worth optimizing “by hand”

• Among ideas tried:
– Automatic loop unroll with icc pragma
– Pack 3 coords in one int – but loose time on division
– Use short instead of int does not help (data not packed automatically)
– Walk back array faster than resetting indices
– Excellent performance and ease of implementation with c++11 vector class
– Use one array for cluster index + 1 bitmask for upper row neighbor check is the best

solution so far
– Optimization of CoG computation helpful (another 10-15%)

• Demanding process…
– Algorithm was looking like a piece of cake, but reality is different
– Requires effort and iterations
– Quite addictive

 17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 17

Scalability (04/2014)

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 18

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6
Number of threads

Events processed per second
Westmere i5-680@3.6GHz, 2 cores, HT

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Number of threads

Events processed per second
SandyBridge E5 2665 @2.4GHz, 16 cores, HT

gcc

icc

1 thread per event, 50 events

Scalability (observations 04/2014)

• Observations
– Suspect bottleneck in memory access, high back-end usage
– Was not expecting good results because of lightweight

computing task (rather memory bound)
– Effects on turbo mode affects the measurements with low

thread count (and the linear baseline for scalability check)
– Fluctuations with high thread count because of small data set

and variance in processing time per event
• Algorithm scales decently

– Suspect locks in memory allocation from 1-thread hotspot
analysis

– Overhead of threading / workload distribution
– Need to deal with streaming data in NUMA node (data/CPU

affinity)

 17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 19

Scalability (06/2014)

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 20

1 thread per event (or chip?)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

-5 0 5 10 15 20 25 30 35

Initial version: c,
neighbor search: dual-row indexing , 2
pixels per int32

Optimized version: c++11 vectors, NO numa
tuning
neighbor search: dual-row indexing +
bitmask

Events processed per second
IvyBridge E5-2643 v2 @ 3.50GHz

 2x 6 cores, HT

What changed (04->06 / 2014)
• Bitmask for neighbor check

– i.e. 24*64 bit in addition to 1500 x 32 bit index
• C++ 11

– Std::vector
– Threading

• Still to do:

– NUMA affinity handling (standalone experiments with libnuma are
promising)

– Redo profiling on ivy bridge (compared to sandybridge, gives finer
details on back-end, higher level metrics and hints for memory
bottlenecks)

– Plot processing time per chip versus number of hits on chip (probably
linear)

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 21

Latest performance (yesterday)

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 22

0

1000

2000

3000

4000

5000

6000

7000

8000

-5 0 5 10 15 20 25 30 35

Manual expression unrolling for CoG

Baseline

Changed data format (row pre-grouping)

Proposal on data format

• Now: hit1 (X,Y) hit2 (X,Y) … [order by row,col]
• What about grouping consecutive pixels in a row?
• Proposed: hitgroup1 (X1,X2,Y) hitgroup (X1,X2,Y)

… [still ordered by row, col]
– Should be easy implement in FEE

• On reference data set, this represents a 2.5x

compression, which in turns also improves
throughput in algorithm

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 23

inaccurate & provocative cost observations

• Higher clock speed is still one easy way to get perf
– to be considered for specific low-latency needs ?

• For some workloads, a desktop might still be a good
contender and more than twice cheaper at same
perf level

02/04/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 24

CPU CPU
Price

$

CPU
mark

Perf
event/s

Price/perf
$/(event/sec

)

I5-680 2c@3.6 GHz
(desktop Q2 2010)

320 3539 373 0.86

E5-2665 16c@2.4 GHz
(server Q2 2012)

1420 12452 724 1.96

X86 summary
• We can now process 430 inner chips @ 400Hz for 1 thread / 5KHz for 1

machine (6 GB/s with 32bit coords)
• How does this extrapolate to full detector? (need full data set) 10-50 times

more?
• We can still progress on local scalability

– NUMA
– Threading framework
– Data format
– Wider vectors

• 10KHz/machine (for 400 chips) looks reasonably reachable, probably more
depending on data format

• Still far from 50KHz for 20000 chips… would need 50-250 nodes just for
cluster finding?

• Algorithm mature enough to clarify estimate, but depends much on
realistic data format. We should focus on this now.

 17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 25

ITS Cluster Finding on GPU

• Work from Boonyarit Changaival @ KMUTT
• Exploit multicore architecture
• Use one thread to process one hit (in most

kernel)
 CPU GPU

GPU

• Preliminary results
– i5-3470 @ 3.2GHz
– Nvidia Geforce GTX780

• 30 events/second (same ref. data as for x86, i.e. 430 modules)

– 1 CPU thread
– Show full occupancy over all kernels (>90%)
– Very low serialization portion (in most kernels)

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 27

GPU Runtime Overview
• Spend 71% of total runtime on GPU
• Overhead is 29% of the total runtime

– Initialization
– Host and device memory allocation
– Moving data between host and device

• Why slower than x86?
– Copying memory between Host and Device
– Loops in GPU decrease performance
– Not many rich instructions

• My personal analysis: this algorithm does not fit well GPU, too little
floating point math & vector, too much I/O

• Still some ideas to try: multiple GPU cards, multiple CPU threads
• We will still work a bit on this in coming weeks, but unlikely that we gain 2

orders of magnitude…

Xeon Phi
• Initial tests promising for code portability

– Ok to compile, doc not so easy to start with e.g. TBB
– Simple programming paradigm to adapt the code: C++11 / TBB / parallel_for

• Work paused, need to clarify scalability first
• Then tune code with hw specific features (e.g. wider vectors)
• However it might be that we need next generation, with out of order execution

able to handle the many branching we have in cluster finding code. I/O bandwidth
also to be tested.

• HW made available by CERN Techlab
17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 29

#pragma offload_attribute (push,target(mic))
#include "tbb/tbb.h"
#pragma offload_attribute(pop)

__attribute__((target(mic))) void ComputeClusters(dataIn dIn, dataOut *dOut) {…}

void ParallelApplyComputeClusters(dataIn* in, dataOut *out, size_t n) {
 parallel_for(blocked_range<size_t>(0,n),
 [=](const blocked_range<size_t>& r) {
 for(size_t i=r.begin(); i!=r.end(); ++i)
 ComputeClusters(in[i],&out[i]);
 }
);
}

What’s next

• Get full detector data set
• Continue platform implementation

– x86
• Vector/bitmask
• Haswell (new 256bit int instructions, BSR & gather/scatter)
• NUMA affinity / memory pre-allocate / data streaming

– i.e. “framework”, not algorithm

– MIC – 512bit instructions, 70 “slow” cores
– GPU – any good idea?
– FPGA (many implementations, c.f. RT14) ?

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 30

Conclusion

 One need a real use case to progress!

– Find a realistic workload
– Implement the algorithm with various hw/sw
– Get performance results
– Get experience with the tools and platforms

– Exercise was fruitful in all aspects

17/06/2014 S.Chapeland / Platform Benchmarking for ALICE upgrade 31

	Benchmarks for the ITS cluster finder��Sylvain Chapeland – ALICE DAQ / O2
	Outline
	ALICE upgrade
	Benchmarks for ALICE upgrade
	ALICE ITS detector upgrade
	Example simulated event on a chip
	Simulated event (close-up)
	ITS cluster finder algorithm
	ITS cluster finder algorithm
	C implementation for x86
	Development cycle
	Profiling
	Callgrind / kcachegrind
	Vtune – amplxe-gui
	Vtune – amplxe-gui
	Code optimization (1 thread)
	Code optimization (1 thread)
	Scalability (04/2014)
	Scalability (observations 04/2014)
	Scalability (06/2014)
	What changed (04->06 / 2014)
	Latest performance (yesterday)
	Proposal on data format
	inaccurate & provocative cost observations
	X86 summary
	ITS Cluster Finding on GPU
	GPU
	GPU Runtime Overview
	Xeon Phi
	What’s next
	Conclusion

