

Philippe CANAL
root.cern.ch

ROOT I/O Review and Future Plans

Philippe Canal
Fermilab

Philippe CANAL
root.cern.ch

 Overview

•  What happened last year
– Besides ROOT 6

•  Priorities
– Multi-processing / Multi-threading
– Performances improvements
– Interface Simplification and Clarification
– Interoperability
– Statistics and feedback

•  Challenges, outlook, discussions

2

root.cern.ch ROOT Planning Day 14 June 2013

Since Last Year

•  New TClass state
•  Checksum Updates

– Still need bug fix and adding std
– Fixed support for base class versions

•  Added TTreeCache::LearnPrefill
•  TTreeCache enabled by env variable
•  TTreeReader
•  Progress on Runtime gen. of CollectionProxy
•  New S3 support class.
•  Full support conversion to/from any STL coll
•  Improved reading std::list<int> branch by 25%
•  Add ROOT::Selection (for genreflex)

3

root.cern.ch ROOT Planning Day 14 June 2013

Rescheduled for after v6

•  Implement support for I/O for private classes

•  Last CheckSum updates
•  Type with template arguments that are enums
•  Renaming rules fixes

•  TTreeCache
•  Add missing global enable/disable API
•  Turn on by default
•  Install the new OptimizeBasket proposals

4

root.cern.ch ROOT Planning Day 14 June 2013

Here comes cling

•  Cling introduces binary compatible
Just In Time compilation of script
and code snippets.

•  Will allow:
–  I/O for ‘interpreted’ classes
–  Runtime generation of

CollectionProxy
•  Dictionary no longer needed for collections! [Summer Student]

–  Run-time compilation of I/O Customization rules
•  including those carried in ROOT file.

–  Derivation of ‘interpreted’ class from compiled class
•  In particular TObject

–  Faster, smarter TTreeFormula
–  Potential performance enhancement of I/O

•  Optimize hotspot by generating/compiling new code on demand
–  Interface simplification thanks to full C++ support

•  New, simpler TTree interface (TTreeReader) [Summer Contributor]
5

Philippe CANAL
root.cern.ch

 Priorities

•  Multi-processing / Multi-threading

•  Performances improvements
–  Amdahl, File Format, Streaming, Vectorization

•  Interface Simplification and Clarification
–  Leverage C++11 for ease of use/documentation

•  Interoperability
–  HDF5, R, Python, Blaze, numpy, etc.

•  Additional statistics and Feedback on I/O Perf.
6

root.cern.ch ROOT Planning Day 14 June 2013

Multi-Processing

•  Import Chris’ changes to v5.34 and port to v6.02

•  Extend the ability to disable auto-add
– Limited to TH* so far
– Remove use of I/O in TH*::Clone

•  Resolve parallelism limitations
– As shown in the CMS condition database example

7

root.cern.ch ROOT Planning Day 14 June 2013

Multi-Processing

•  Histogram and
multi-threading
– Need to start prototyping &

testing asap
– New interface to incrementally

merge histograms from
multiple threads

•  Read/Write TTree branches in multiple user thread
– Need to start prototyping/testing asap
– Do we need new/simpler interface?
– Need to design the limit and semantics
– Extra complexity/cost to conserve basket clustering
– Require TFile synchronization

8

root.cern.ch ROOT Planning Day 14 June 2013

Thread Safety

•  Cling enables support for robust multi-thread I/O
–  Cling has clear separation of database engine and execution

engine allowing to lock them independently

•  Chris’ changes allow multi-threaded I/O as long as
–  Each TFile and TTree objects are accessed by only one thread (or

the user code is explicitly locking the access to them)
–  Interpreter is *not* the top level entry point.
–  Cling will allow to remove the second limitation.

•  More has to be done to optimize
–  Some object layout leads to poor performance and poor scalability
–  Reduce number of ‘class/version/checksum’ searches

•  To reduce the number of atomic and thread local uses
9

root.cern.ch ROOT Planning Day 14 June 2013

Parallel Merge Challenges

•  Need official daemon/thread parallelMergeServer
–  Could use Zero MQ as underlying transport.

•  Need to efficiently deal with many histograms
–  Each of them still need to be merged at the end

•  Lack of ordering of the output of the workers
–  No enforcing of luminosity block boundaries for example
–  Support for ordering increases worker/server coupling
–  Space reservation is challenging (variable entry)

•  Need a new concept (an Entry Block)
–  ‘Set of entries that are semantically related’
– To be used to gather those entries together ‘automatically’
– Need flexible/customizable marker
–  Is it really worth the extra complexity?

10

root.cern.ch ROOT Planning Day 14 June 2013

•  Fully tested and performing version requires
•  Parallel Merge Thread
•  Parallel Merge Daemon (authorization, auto-start, error handling)
•  Parallel Merge for Histogram (proper set

of benchmarks, performance improvement, etc.)

•  Benchmarks
– Still to be designed
– Based on existing example (some multithread) and new

example based of the Event test.
– Based on experiment uses cases.

Parallel merge

11

root.cern.ch ROOT Planning Day 14 June 2013

Other Possible Parallel Processing

•  Read/Write branches using internals thread/tasks
– Need to partially back out memory optimization
– Require TFile synchronization

•  Offload work (compression) to separate thread
– Need to work well with task based scheduler

•  Thread safe version of TFile
– Not quite sure of semantic
– Need to be cost-neutral for traditional uses

•  Support for ‘multiple’ interpreter state
– Decide on need / interface / use limitations
–  shared libraries (their PCMs) shared between interpreters?

12

root.cern.ch ROOT Planning Day 14 June 2013

Optimizations

•  OptimizeBasket
– There are a couple of new algorithm proposals
– Need to be tested on wide range of cases

•  Read/WriteBuffer
–  25% of the read code moved to optimized framework

(function based) ; representing most of the use cases.
– Write code still need to be similarly

optimized
•  TTreeCache

– Start using it in TTreeCloner.
– Allow alternative algorithm
– Tests, tests and tests
– Switch on by default

13

root.cern.ch ROOT Planning Day 14 June 2013

File Format Upgrades

•  Switch to little-endian
–  Enable additional run-time optimization

•  Support C++11 entities
•  Improve meta-data

–  Reduce cost of repeated [deep] hierarchies
•  Space saving changes.

–  Improve compression of branch of unsplit collections
–  Reduce overhead for deep hierarchy

•  Time saving changes
–  Compress each entry individually to improve random access

•  Write-once files
–  Support for direct write to Hadoop file System

•  SQLite within ROOT file
–  Support database (for meta-data) co-located with data

14

root.cern.ch ROOT Planning Day 14 June 2013

I/O Customization Framework

•  Bug fixes
– Class renaming
– Rules execution in complex TTree

•  Continue development
– Extend documentation
–  Implement Write rules
– Enable Just-In-Time compilation of rules

•  Extend automatic conversions
– Derived* <-> Base*
– From object to pointer

15

root.cern.ch ROOT Planning Day 14 June 2013

TTree

•  TTree
– Bug fixes
–  Interface simplification

•  Promote TTreeReader
•  Make SetAddress and SetBranchAddress ‘smarter’

– Optimizations
–  Improve documentation
–  Improve statistics gathering [Atlas]

•  TTree Draw/Scan
– Leverage cling

16

root.cern.ch ROOT Planning Day 14 June 2013

Vectorization

•  In TTree
– Eg. TTree::Draw execute formula on more than one

element at a time
– New interface allowing retrieval of multiple entries at once.

•  In Streaming
– Changing endianess would also merging and vectorization of

even more streaming actions.

17

root.cern.ch ROOT Planning Day 14 June 2013

Brainstorming Future Interfaces

•  Lesson learned in industry:
– deprecation does not work (Google, Apple, etc.)
–  but interface versioning does work: Windows, Javascript,

libc++,…
•  Challenge

–  reduce duplication by making old interfaces use new
implementations

•  One example of a possible solution

18

 namespace ROOT {!
 namespace v6 { !
 class TFile { current interface }; // ROOT::v6::TFile!
 }!
 inline namespace v7 { !
 class TFile { better interface }; // ROOT::TFile!
 }!
 }!
 // If backward compatibility is needed/wanted!
 using namespace ROOT::v6; // TFile <==> ROOT::v6::TFile!

root.cern.ch ROOT Planning Day 14 June 2013

Brainstorming Future Interfaces

•  Some possible examples:

– Type safe interfaces: no more casting
– No globals, minimal static caching, const == thread safe
– From:

– To:

– Conscious inlining e.g. for vectorization
–  Improve data structure for vectorization
– Revisit/Redesign all functions in ROOT/Meta in view of cling
– Further simplify and reduce dictionaries
 19

 OwnOrNot(TWhatever* arg);!

 OwnOrNot(std::unique_ptr<TWhatever> arg);  
 OwnOrNot(&myWhatever); // Compilation error! !

root.cern.ch ROOT Planning Day 14 June 2013

Interoperability

•  HDF5, R, Python, Blaze, numpy, etc.

– These ecosystems has their strengths and weaknesses as well
some similarities and significant differences with ROOT

– What can we learn from them?
– How can ROOT [I/O] can be leveraged to enhance them?
– How could our workflows benefit from using directly or

indirectly any part of these ecosystems?
– Who can help?

20

root.cern.ch ROOT Planning Day 14 June 2013

Additional statistics and Feedback

•  Standardize and expand statistics gather in TFile impl.

•  Give qualitative feedback on user data model and
customization choices:
– Evaluate the deserialization speed of a given object or a given

TTree organization.
– Visualizing ROOT file format layout
– Correlate RIO API calls with block IO activity in the kernel

(eg. SystemTap)

21

root.cern.ch ROOT Planning Day 14 June 2013

Challenges

•  Large program of work
–  59 outstanding deficiencies
– 63 improvements and new features

•  Effort
– My effort spread over ROOT I/O, Cling and Geant/GPU

•  Split 50/50 between ROOT and Geant

– Extra effort required to make any real progress
•  Danilo will ramp up work on I/O

– ROOT I/O Workshop helps coordinate direct effort from
experiments
•  This comes and goes ‘as needed’ and competes with their own internal efforts.

– Summer Students and other external contribution
•  MakeSelector for TTreeReader
•  Runtime generation of CollectionProxy

22

root.cern.ch ROOT Planning Day 14 June 2013

Conclusion

•  Ambitious program to update ROOT for tomorrow’s need
– Update interfaces reflecting/solving usage problems
– Use current C++, code style and patterns
– Allow more multi-processing uses
– Reduce need for locks/atomics etc
–  Improve performance and

usability
– Extend use of

vectorization
– Extend reach of ROOT

23

Philippe CANAL
root.cern.ch

 Priorities

•  Multi-processing / Multi-threading

•  Performances improvements
–  Amdahl, File Format, Streaming, Vectorization

•  Interface Simplification and Clarification
–  Leverage C++11 for ease of use/documentation

•  Interoperability
–  HDF5, R, Python, Blaze, numpy, etc.

•  Additional statistics and Feedback on I/O Perf.
24

Philippe CANAL
root.cern.ch

Backup slides

25

root.cern.ch ROOT Planning Day 14 June 2013

Backward Incompatibility

•  rootcling no longer re-#defines the
private and protected keywords
to public.
– ACLiC no longer breaks privacy!

•  As a consequence I/O is currently
not supported for private or protected
classes
– The major issue is access the constructor and destructor

26

root.cern.ch ROOT Planning Day 14 June 2013

Why one thread/schedule per TTree

•  When reading TTree holds:
–  Static State:

•  List of branches, their types their data location on file.

–  Dynamic State:
•  Current entry number, TTreeCache buffer (per TTree),

User object ptr (one per (top level) branch),
Decompressed basket (one per branch)

–  Separating both would decrease efficiency
•  Advantages

–  Works now!
–  No need for locks or synchronization
–  Decoupling of the access patterns

•  Disadvantages
–  Duplication of some data and some buffers.

•  However this is usually small compare to the dynamic state.

–  Duplication of work if access overlap
27

root.cern.ch ROOT Planning Day 14 June 2013

What’s in a name …

•  CINT and C++ names are quite different
–  Implicit using namespace std statement in CINT.
–  User typed spelling vs. ‘real’ spelling

•  vector<Int_t> vs std::vector<int, std::allocator<int> >
• User typed spelling not always available in Clang, especially for derived

entities (data member of templates).
–  Clang does not propagate typedef to default template args
–  CINT template parsing bugs/shortcuts.
–  Opaque typedefs (Double32_t, std::string, etc…)

•  Almost sole source of ‘risk’ left for I/O, handled by:
–  Adapt code to automatically discover the correct entity given the

wrong (CINT) name.
•  Automatic matching of different spelling

–  Adapt checksum and schema checker to detect match due to
variation in naming.
•  Added flexibility in checksum matching cross-checks

28

root.cern.ch ROOT Planning Day 14 June 2013

1 year outlook

29

End	
 Of	
 Philippe	
 	
 Only	
 Philippe	
 and	
 extra	
 effort	

3798	
 The	
 various	
 TTree::Branch	
 func5ons	
 are	
 very	
 hard	
 to	
 figure	
 out	

3992	
 TSelector::Process()	
 on	
 TChain	

5078	
 Update	
 fast-­‐merging	
 to	
 leverage	
 the	
 TTreeCache	

4549	
 TRefArray	
 does	
 not	
 clean	
 fUIDs	
 array	
 in	
 Streamer	

4489	
 Memory	
 leak	
 when	
 TTree::BuildIndex	
 is	
 called	
 mulNple	
 Nmes	
 4550	
 TMessage	
 doesn't	
 honour	
 kIsOwner	
 bit	
 when	
 compression	
 is	
 used	

July	
 4549	
 TRefArray	
 does	
 not	
 clean	
 fUIDs	
 array	
 in	
 Streamer	
 4489	
 Memory	
 leak	
 when	
 TTree::BuildIndex	
 is	
 called	
 mulNple	
 Nmes	

5070	
 Parallel	
 merging	
 daemon	

4044	
 Documenta5on	
 of	
 compress	
 parameter	
 of	
 TFile::Open()	

Genreflex	
 replacement	

August	
 Genreflex	
 replacement	
 5080	
 Develop	
 a	
 comprehensive	
 test	
 plan	
 for	
 Op6mizeBasket,	
 LearnPrefill,	
 TTreeCache.	

5079	
 Update	
 TTreePerfStats	
 to	
 support	
 mul5ple	
 cache	
 per	
 file	
 (Peter)	

5079	
 Update	
 TTreePerfStats	
 to	
 support	
 mul5ple	
 cache	
 per	
 file	
 (Peter)	
 5085	
 TTreeIndex	
 suppor5ng	
 Long64_t	
 (Peter)	

5085	
 TTreeIndex	
 suppor5ng	
 Long64_t	
 (Peter)	
 5084	
 TTreeFormula	
 calcula5on	
 in	
 Long64_t	
 (Peter)	

5084	
 TTreeFormula	
 calcula5on	
 in	
 Long64_t	
 (Peter)	
 5071	
 Parallel	
 merge	
 of	
 histograms	

September	
 114	
 Fix	
 issues	
 in	
 the	
 renaming	
 of	
 classes	
 in	
 split	
 branches	
 where	
 it	
 is	
 the	
 base	
 classes	
 5075	
 Write	
 only	
 once	
 files	
 (Hadoop)	

4496	
 TTree	
 doc	

5073	
 Explore	
 changing	
 the	
 on-­‐file	
 byte	
 format	
 to	
 li\le	
 endian!	

October	
 5078	
 Update	
 fast-­‐merging	
 to	
 leverage	
 the	
 TTreeCache	
 4441	
 hadd	
 crashes	
 when	
 merging	
 ntuples	
 with	
 different	
 formats	

Release	
 Cut	
 off	
 	

114	
 Fix	
 issues	
 in	
 the	
 renaming	
 of	
 classes	
 in	
 split	
 branches	
 where	
 it	
 is	
 the	
 base	
 classes	

November	
 5070	
 Parallel	
 merging	
 daemon	
 4839	
 TTree::Refresh	
 and	
 TTree::GetEntry	
 causing	
 crash	

113	
 Fix	
 issues	
 when	
 the	
 target	
 of	
 the	
 rule	
 is	
 an	
 'unsigned	
 int'	
 and	
 when	
 it	
 is	
 a	
 struct	

3709	
 Crash	
 when	
 wri5ng	
 object	
 with	
 schema	
 rule	

December	
 5073	
 Explore	
 changing	
 the	
 on-­‐file	
 byte	
 format	
 to	
 liXle	
 endian!	
 5157	
 Enhance	
 Documenta5on	
 for	
 I/O	
 customiza5on	
 rules	

5077	
 Find	
 a	
 way	
 to	
 avoid	
 storing	
 the	
 byte	
 count	
 and	
 version	
 number	
 for	
 deep	
 hierarchy!	

113	
 Fix	
 issues	
 when	
 the	
 target	
 of	
 the	
 rule	
 is	
 an	
 'unsigned	
 int'	
 and	
 when	
 it	
 is	
 a	
 struct	
 5082	
 Upgrade	
 SetAddress	
 and	
 SetBranchAddress!	

January	
 3709	
 Crash	
 when	
 wriNng	
 object	
 with	
 schema	
 rule	
 131	
 Op5mize	
 Baskets	

3078	
 Schema	
 evolu5on	
 rules	
 not	
 applied	
 when	
 loading	
 from	
 TTree	

4049	
 Base	
 class	
 schema	
 problem	
 when	
 using	
 member	
 wise	
 streaming	

5156	
 TTree::Draw	
 and	
 exis5ng	
 histogram	

February	
 5075	
 Write	
 only	
 once	
 files	
 (Hadoop)	
 5183	
 TTree	
 c'tor	
 should	
 take	
 TDirectory	

4550	
 TMessage	
 doesn't	
 honour	
 kIsOwner	
 bit	
 when	
 compression	
 is	
 used	
 5066	
 mul5-­‐threaded	
 file	
 compression	
 (tree	
 wri5ng)	

March	
 4833	
 TMessage::ReadObjectAny	
 returns	
 non-­‐null	
 pointer	
 even	
 in	
 case	
 of	
 errors	
 4441	
 hadd	
 crashes	
 when	
 merging	
 ntuples	
 with	
 different	
 formats	

4444	
 ROOT	
 crashes	
 reading	
 bad.root	
 file	
 (II)	

4576	
 Error	
 reading	
 older	
 version	
 ROOT	
 tree	
 file	
 acer	
 upgrading	
 ROOT	

April	
 4049	
 Base	
 class	
 schema	
 problem	
 when	
 using	
 member	
 wise	
 streaming	
 119	
 Implement	
 Write	
 rules	

Release	
 Cut	
 off	
 	

4839	
 TTree::Refresh	
 and	
 TTree::GetEntry	
 causing	
 crash	
 5076	
 In	
 TBasket	
 compress	
 each	
 entry	
 individually	
 (for	
 large	
 basket)!	

May	
 5173	
 Issue	
 with	
 collecNon	
 proxy	
 and	
 emulated	
 class	
 5159	
 Improve	
 TTree	
 documenta5on	
 about	
 SetMakeClass()	

root.cern.ch ROOT Planning Day 14 June 2013

1 year outlook

•  … Not counting unexpected but essential new issues ….

•  Current effort
–  20ish (mostly small) issues addressed

•  Additional effort
–  at least 40ish (many large) issues addressed

30

root.cern.ch ROOT Planning Day 14 June 2013

Multi Processing Bottleneck

•  Number of cores and nodes increasing dramatically
•  Managing very large number of files is both hard and

somewhat wasteful.
•  Usual solution is to

merge the files.

•  In addition, the
number of disks is not
increasing as fast
– Hidden serialization,

for example when using
whole node allocation
and fork on write.

31

Philippe CANAL
root.cern.ch

Priorities

•  Multi-processing / Multi-threading
•  Performances improvements

– OptimizeBasket
–  Endianess of buffer
–  “fast path” deserialization
–  Cost of repeated [deep] hierarchies
– Write I/O customization Rules

•  Interface Simplification and Clarification
–  SetBranchAddress, TTree::Draw, etc.
–  Leverage C++11 for ease of use/documentation.

•  Interoperability
– HDF5, R, Python, Blaze, numpy, etc.

•  Additional statistics and Feedback
–  tool to evaluate the deserialization speed of a given object on a scale of one to ten using a few

heuristics (similar in spirit to how lint will evaluate C source code quality).
–  tools for visualizing ROOT file format layout
–  module for SystemTap which will allow us to log and correlate RIO API calls with block IO

activity in the kernel.
32

