
ALICE experience with ROOT I/O 

Andrei Gheata 

ROOT I/O Worksop and Future Plans 

25 June 2014 



Outline 

 The I/O issues in ALICE 

 Analysis and ROOT I/O 

 Tree caching and prefetching 

 Flattening the AOD structure 

 

A.Gheata, ROOT I/O Workshop 



I/O issues in ALICE 

 AliRoot framework using ROOT as foundation 

 Entire I/O based on ROOT: raw data, simulation, reconstruction, analysis 

 Complex detector with 18 subsystems 

 Large event size, dominated by TPC contribution 

 Up to 5-8 MB Pb-Pb uncompressed 

 I/O “contributors” 

 Raw data reconstruction: raw data as input (local disk), reconstructed 
ESD events as output (local disk) 

 Simulation: no input data, hits&digits + kinematics as output (local disk) 

 Filtering/skimming: ESD as input (LAN/WAN), (nano)AOD as output (local 
disk) 

 Analysis: all event formats (ESD, (nano)AOD) as input (LAN/WAN), 
histograms or other intermediate formats as output (local disk) 

A.Gheata, ROOT I/O Workshop 



ALIEN + FILE CATALOG 

AODB 

(analysis 

database

) 

ALICE data flow 

4 

DETECTOR 

ALGORITHMS 

 

RAW ROOTIFY 

CALIBRATION 
RECONSTRUC

TION 

FILTERING 

ONLINE OFFLINE 

SHUTTLE 

Detector 

algorithms 

RAW.root 

OCDB 

Calibratio

n data 

AliESDs.root AliAOD.root 

A
N

A
LY

S
IS

 
re

su
lts.ro

o
t 

QUALITY 

ASSURANCE 



Event size by collision type 

Collisio

n 

Year RAW 

size 

[kB/ev] 

ESD 

size* 

[kB/ev] 

AOD 

size* 

[kB/ev] 

RAW/ES

D 

ESD/AO

D 

 

p-p 

2010 550 62 10.5 8.8 6.0 

2011 500 61 6.7 8.2 9.8 

2012 1820 113 9.6 16.1 11.8 

Pb-Pb 2010 11380 1710 365 6.7 4.7 

2011 5490 4070 1800 1.35 2.3 

p-Pb 2013 612 271 60 2.6 4.5 

2013 1660 1640 379 1.0 4.3 

* Compressed data with compression factor ~4-5 



Analysis and ROOT I/O 

 Most I/O issues become visible in distributed analysis 

 Big input data, not necessarily matching CPU workload 

 Combined LAN/WAN read access 

 Workload management policy enforcing locality as much as 
possible, WAN/LAN access ratio evolved from ~20-30% to less 
than 10% average 

 Several directions to tackle the I/O problem 
 Combine analysis in trains 

 Restrict the number of branches to the minimum needed 

 Filter to more compact formats (nanoAOD’s) 

 Enable ROOT I/O helpers: tree caching & prefetching 

 Flatten the AOD format 

 

A.Gheata, ROOT I/O Workshop 



Asynchronous prefetching 

A.Gheata, ROOT I/O Workshop 

Elvin Selaru, ROOT Users 

Workshop, Saas-Fee 2013 



Caching and prefetching in analysis 

 ALICE analysis built on top of TChain::Process(TSelector) 
 We can use ROOT built-in functionality to enhance read performance 

 Caching enabled by default in ALICE analysis framework 

 Adjustable cache size 

 Most frequent use case for trains: sequential read, all branches enabled 

 Testing prefetching: WAN read 

 AOD: ~300MB read from Torino::SE (RTT ~22ms) 

 Analysis task reading in all events and emulating CPU per track 

 Plotting “useful” analysis CPU versus real time for the job 

 No caching/prefetching 

 TTreeCache enabled 

 Prefetching enabled 

A.Gheata, ROOT I/O Workshop 



Prefetching exercise 

A.Gheata, ROOT I/O Workshop 

no caching 

caching 

prefetching 



Prefetching gain 

A.Gheata, ROOT I/O Workshop 

10-15% in I/O bound regime, less than 5% if CPU bound 



Flattening AOD’s 

 Current AOD event structure: more than 400 branches, 

deep object hierarchy 

 Format highly dependent on AliRoot types 

 How costly is hierarchy, can we get benefits from 

flattening the structure 

 Better compression 

 Analysis less dependent on AliRoot 

 Faster I/O 

 Structure more adapted for vectorization 

A.Gheata, ROOT I/O Workshop 



Flat AOD exercise 

 Use AODtree->MakeClass() to generate a skeleton, then rework 

 Keep all AOD info, but restructure the format 

Int_t fTracks.fDetPid.fTRDncls -> Int_t *fTracks_fDetPid_fTRDncls;  //[ntracks_] 

 More complex cases to support I/O: 

typedef struct { 

  Double32_t       x[10];  

} vec10dbl32; 

Double32_t fTracks.fPID[10] -> vec10dbl32 *fTracks_fPID; //[ntracks_] 

Double32_t *fV0s.fPx //[fNprongs] -> TArrayF *fV0s.fPx; //[nv0s_] 

 Convert AliAODEvent-> FlatEvent 

 Try to keep the full content AND size 

 Write FlatEvent on file 

 Compare compression, file size and read speed 

A.Gheata, ROOT I/O Workshop 



Results 

 Tested on AOD PbPb: AliAOD.root 
****************************************************************************** 

*Tree      :aodTree   : AliAOD tree                                            * 

*Entries  :     2327 : Total =      2761263710 bytes  File  Size =  660491257 * 

*              :          : Tree compression factor =   4.18                       * 

****************************************************************************** 

****************************************************************************** 

*Tree    :AliAODFlat: Flattened AliAODEvent                                  * 

*Entries :     2327 : Total =      2248164303 bytes  File  Size =  385263726 * 

*        :          : Tree compression factor =   5.84                       * 

****************************************************************************** 

 Data smaller (no TObject overhead, TRef->int) 

 30% better compression 

 Reading speed 
 Old:   CPU time= 103s , Real time=120s 

 New: CPU time=   54s , Real time=  64s 

 



Implications 

 User analysis more simple, working mostly with basic types 
(besides the event) 

 Simplified access to data, highly reducing number of (virtual) 
calls 

 ROOT-only analysis 

 Backward incompatible, but migration from old to new 
format possible 
 Sacrificing performance as first step (built-in transient event 

converter) 

 Much better vectorizable track loops 

 This approach is now taken seriously for Run2 and Run3 

 



Some concerns… 

 Few things that I hope will be covered by the discussions 

 Asynchronous de-serialization of different entries in  
trees/chains 

 In local processing, this is a serial step overwhelming disk 
reading 

 Thread safe concurrent containers as replacement for 
existing ones 

 Including I/O friendly ones 

 C++11 comes at rescue… 

 Re-design of thread safety in handling critical data structures 
related to I/O 

 Like histograms and trees, avoiding TThread::Lock 

A.Gheata, ROOT I/O Workshop 


