Detector and physics performance

Caveat: plots/numbers to be updated

Chapter – where do we stand:

- Machine optics
- Detector acceptance
- Detector resolution
- RP alignment

- **Detector and Physics Performance** Machine optics 2.12.2 Detector acceptance Detector resolution 2.32.4 RP alignment 2.5Machine induced background 2.6 Trigger efficiency Physics processes 2.7 2.7.1Central exclusive dijet production . . Central exclusive WW production . . 2.7.2
- Machine induced background
- Trigger efficiency/strategy (?)
- Physics processes (excl. dijet, excl. WW)

Machine optics

- HECTOR, a fast simulator for particle transport in a beamline
- good agreement with MADx
- Full transport line simulation in CMSSW

Detector acceptance

acceptance: ξ vs t

- •Particle gun (t, ξ , ϕ) based on HECTOR at \sqrt{s} = 14 TeV
- Single arm acceptance in t,ξ
 15mmx12mm detector
 (QUARTIC) at 2 mm from
 beam
- •Based on ExHuME gen.
 - ⇒ change to 204/214 m

acceptance vs m_X

Detector acceptance (cont.)

Detector resolution

- Study occupancy, track multiplicity Focus on timing performance -timing resolution, detector segmentation Establish requirements to do physics studies Timing detector optimization (?) Propagate protons to PPS Smear resolution according to the vertex, beam divergence, momentum
- Translate background into (in)efficiency
- Time resolution scenarios:
 - -10 ps (optimistic)
 - -30 ps (baseline)

RP dynamic alignment

Machine induced backgrounds

- Use experience from data
- Need to extrapolate from μ =9 to μ =50
- Extrapolate background cross-checked with simulation in order to reproduce track multiplicity in data

Trigger efficiency

Define triggers needed to perform physics studies

- -trigger in RP: single(?)/double-arm
- -trigger in central detector
- Observables: t₁ and t₂
 - -time of collision: $(t_1+t_1)/2$
 - -vertex position: t_1 - t_2

Physics processes

Exclusive dijets

- -high jet p_T events (M_{ii} up to~700-1000 GeV)
- -test of pQCD mechanism of exclusive production

Exclusive WW

- –quartic gauge boson coupling WW $\gamma\gamma$
- -sensitivity to anomalous couplings
- -use central WW trigger

Physics processes

• Exclusive dijets

- -high jet p_T events (M_{ii} up to~700-1000 GeV)
- -test of pQCD mechanism of exclusive production

• Exclusive WW

- -quartic gauge boson coupling WW $\gamma\gamma$
- -sensitivity to anomalous couplings
- -use central WW trigger

$p \rightarrow p$ $\gamma \rightarrow W$ $\gamma \rightarrow W$

Include instrumental background in physics simulation

- Signal (WW, dijets) + physics background according to pileup (includes detector simulation)
- Instrumental background: given in terms of probability of having additional track in a certain cell of the timing detector (includes inefficiency of multiple-hit, timing resolution efficiency, etc.)
- Timing detector optimization (?)

Running conditions

- •β~0.5-0.6m
- N_{bunches}~2800
- N_p~1.5 x 10¹¹
- E_{beam}=6.5 TeV
- µ=50
- L=30-100 (-300) fb⁻¹
- RP position wrt beam: 15 (20?) σ
- RP tracking position: z= 204/214 m
- RP timing position: z=216 m

11

12

Multiple interactions at CDF: PRD 86 (2012) 032009

Multiple interactions at CDF: PRD 86 (2012) 032009

• Multiple proton-antiproton interactions spoil diffractive signature

- Measure $\boldsymbol{\xi}$ from calorimeter and from RP tracking
- Reject multiple interactions
 - exclude ξ>0.1 (ND+SD interactions)