Detector and physics performance

Caveat: plots/numbers to be updated
Chapter - where do we stand:

- Machine optics
- Detector acceptance
- Detector resolution
- RP alignment

2 Detector and Physics Performance
2.1 Machine optics
2.2 Detector acceptance
2.3 Detector resolution
2.4 RP alignment
2.5 Machine induced background
2.6 Trigger efficiency
2.7 Physics processes
2.7.1 Central exclusive dijet production
2.7.2 Central exclusive WW production

- Machine induced background
- Trigger efficiency/strategy (?)
- Physics processes (excl. dijet, excl. WW)

Machine optics

- HECTOR, a fast simulator
 for particle transport in a beamline
- good agreement with MADx
- Full transport line simulation in CMSSW

[^0]
Detector acceptance

acceptance: ξ vs t
-Particle gun ($\mathrm{t}, \zeta, \varphi$) based on HECTOR at $\sqrt{ } s=14 \mathrm{TeV}$ - Single arm acceptance in t, ς $15 \mathrm{~mm} \times 12 \mathrm{~mm}$ detector (QUARTIC) at 2 mm from beam - Based on ExHuME gen.
\Rightarrow change to $204 / 214$ m
acceptance vs m_{x}
V. Avati, M. Gallinaro - "PPS TDR: Detector and physics performance" - March 11, 2014

Detector acceptance (cont.)

Acceptance: X vs Y
 (includes ξ, t ellipses)

Detector resolution

- Study occupancy, track multiplicity
- Focus on timing performance
-timing resolution, detector segmentation
- Establish requirements to do physics studies
- Timing detector optimization (?)
- Propagate protons to PPS
- Smear resolution according to the vertex, beam divergence, momentum
- Translate background into (in)efficiency
- Time resolution scenarios:
- 10 ps (optimistic)
-30 ps (baseline)
V. Avati, M. Gallinaro - "PPS TDR: Detector and physics performance" - March 11, 20 Y $_{4}^{\text {sen }}$

RP dynamic alignment

maximize the $|t|$-slope (normalized to max slope) \Rightarrow determine X and Y offsets

V. Avati, M. Gallinaro - "PPS TDR: Detector and physics performance" - March 11, 2014

Machine induced backgrounds

- Use experience from data
- Need to extrapolate from $\mu=9$ to $\mu=50$
- Extrapolate background cross-checked with simulation in order to reproduce track multiplicity in data

V. Avati, M. Gallinaro - "PPS TDR: Detector and physics performance" - March 11, 2014

Trigger efficiency

- Define triggers needed to perform physics studies -trigger in RP: single(?)/double-arm -trigger in central detector
- Observables: t_{1} and t_{2}
-time of collision: $\left(\mathrm{t}_{1}+\mathrm{t}_{1}\right) / 2$
-vertex position: $\mathrm{t}_{1}-\mathrm{t}_{2}$

Physics processes

- Exclusive dijets
-high jet p_{T} events (M_{j} up to~700-1000 GeV)
-test of pQCD mechanism of exclusive production
- Exclusive WW
-quartic gauge boson coupling WW $\gamma \gamma$
- sensitivity to anomalous couplings

- use central WW trigger

Physics processes

- Exclusive dijets
-high jet p_{T} events (M_{jj} up to~700-1000 GeV)
-test of pQCD mechanism of exclusive production
- Exclusive WW
-quartic gauge boson coupling WW $\gamma \gamma$
- sensitivity to anomalous couplings

- use central WW trigger
- Include instrumental background in physics simulation
- Signal (WW, dijets) + physics background according to pileup (includes detector simulation)
- Instrumental background: given in terms of probability of having additional track in a certain cell of the timing detector (includes inefficiency of multiple-hit, timing resolution efficiency, etc.)
- Timing detector optimization (?)

Running conditions

- $\beta \sim 0.5-0.6 \mathrm{~m}$
- $\mathrm{N}_{\text {bunches }} \sim 2800$
- $\mathrm{N}_{\mathrm{p}} \sim 1.5 \times 10^{11}$
- $\mathrm{E}_{\text {beam }}=6.5 \mathrm{TeV}$
- $\mu=50$
- L=30-100 (-300) fb-1
- RP position wrt beam: 15 (20?) σ
-RP tracking position: $z=204 / 214 \mathrm{~m}$
- RP timing position: $z=216 \mathrm{~m}$

backup

Multiple interactions at CDF

CDF: PRD 86 (2012) 032009

Multiple interactions at CDF

CDF: PRD 86 (2012) 032009

- Multiple proton-antiproton interactions spoil diffractive signature

- Measure ξ from calorimeter and from RP tracking
- Reject multiple interactions
- exclude $\xi>0.1$ (ND+SD interactions)

[^0]: V. Avati, M. Gallinaro - "PPS TDR: Detector and physics performance" - March 11, 2014

