

Grid storage - types, constraints and availability

GRID/CAF user forum March 27, 2008

GRID storage types - MSS

- Mass storage System all data written to this type of storage goes to tape
 - Available only at the large T1 centres
 - Very complex internal structure
- Pros
 - Configured to store very large amounts of data (multi-PB)
 - Still (slightly) cheaper than disk-only storage
 - Safer (unless flooded)
- Cons
 - Data is recalled slowly from tape
 - Disk buffer is much smaller than the tape backend
 - Easy to fall victim to a race condition multiple users reading different data sample, thus trashing the disk buffer

GRID storage types – MSS (2)

Storage types

- dCache developed at DESY/FNAL
- CASTOR2 developed at CERN

• In ALICE

- RAL, CNAF, CERN CASTOR2
- CCIN2P3, FZK, NL-T1, NDGF dCache
- Both dCache/CASTOR2 implement reading/writing through the xrootd protocol
 - CASTOR2 plug-in
 - dCache protocol emulation

GRID storage types – MSS (3)

- ALICE computing model custodial storage
 - RAW data (@T0 CERN + one copy @T1s)
 - ESDs/AODs from RAW and MC production (copy from T2s, regional principle)
- From user point of view
 - Reading of ESDs/AODs from MC/RAW data production
 - Writing of very important files
 - The underlying complexity of the storage is completely hidden by AliEn

Use of MSS in the everyday analysis

For reading of ESDs – nothing to be done

- Access typically through collections/tags
- Automatically taken care of by the AliEn JobOptimizer
- Users should avoid JDL declarations like

Requirements = member(other.GridPartitions, "Analysis");

 The above interferes with the JobOptimizer and may prevent the job from running

For writing

 only for copy of important files – JDL, configurations or code, never for intermediate or even final output of analysis jobs

Use of MSS in the everyday analysis (2)

- Top 5 reasons to avoid writing into MSSenabled storage
 - 1. Access to MSS is slow, recall time from tape is rather unpredictable
 - 2. If your file is not in the disk buffer, you may wait up to a day to get it back
 - 3. With the exception of very small number of userspecific and unique files, all other results are reproducible
 - MSS is extremely inefficient for small files (below 1GB)
 - More and more disk storage is entering production it is also very reliable, chances that your files will be lost are very small

Use of MSS in the everyday analysis (3)

Summary of good user practices

- Use MSS only for backing up of important files, keep the results of analysis on *disk* type storage
- Always use archiving of files. The declaration below will save only one file in the MSS, there is no time penalty while reading

OutputArchive={"root_archive.zip:*.root@<MSS>"};

GRID storage types - Disk

- Disk all data written to this type of storage stays on disk
 - Available everywhere, T0, T1 and T2 centres
 - Simple internal structure typically NAS
- Pros
 - Fast data access
 - Prices per TB quickly falling
 - Very safe (if properly configured RAID)
 - PB size disk storage can be easily build today
- Cons
 - None really ideal type of storage

GRID storage types – Disk (2)

Storage types

- dCache developed at DESY/FNAL
- DPM developed at CERN
- xrootd developed at SLAC and INFN
- In ALICE
 - All T2 computing centres are/should deploy xrootd or xrootd-enabled storage
- Both dCache/DPM implement reading/writing through the xrootd protocol
 - DPM plug-in
 - dCache protocol emulation

GRID storage types – Disk (3)

ALICE computing model – tactical storage MC and RAW data ESDs (T0/T1/T2)

From user point of view

- Reading of ESDs/AODs from MC/RAW data production
- Writing of all types of files

Use of Disk storage in the everyday analysis

For reading of ESDs – nothing to be done

- Access typically through collections/tags
- Automatically taken care of by the AliEn JobOptimizer
- Users should avoid JDL declarations like

Requirements = member(other.GridPartitions, "Analysis");

 The above interferes with the JobOptimizer and may prevent the job from running

For writing - unrestricted

- Through declarations: file@<SE name>
- No user quotas yet
- Easy to change from one SE to another

Use of Disk storage in the everyday analysis (3)

Summary of good user practices

- Use disk storage for all kind of output files
- Report immediately any problems you may encounter (inaccessibility, sluggishness)
- Preferably use archiving of files. The declaration below will save only one file in the disk storage, there is no time penalty while reading

OutputArchive={"root_archive.zip:*.root@<SE>"};

Current SE deployment status

User-accessible storage <u>http://aliceinfo.cern.ch/Offline/Analysis/GRID_status.html</u>
The local support needs some improvements, however the stability is very reasonable

SE Name	AliEn name	Description	SE Status	Size	Used
1. Subatech - DPM	ALICE::Subatech::DPM	DPM (disk), general use	ОК	11.64 TB	0.132 GB
2. SPbSU - DPM	ALICE::SPbSU::DPM	DPM (disk), general use	ОК	5.402 TB	1.94 GB
3. Catania - DPM	ALICE::Catania::DPM	DPM (disk), general use	ОК	45.63 TB	5.645 TB
4. Bari - dCache	ALICE::Bari::dCache	dCache (disk), general use	ОК	4.005 TB	3.651 GB
5. CERN - Castor2	ALICE::CERN::Castor2	Castor2 (MSS), RAW data, ESDs	ОК	931.3 TB	475.7 TB
6. CERN - se	ALICE::CERN::se	xrootd (disk), OCDB master, application packages	ОК	2 TB	967.9 GB
7. GSI - se	ALICE::GSI::se	xrootd (disk), general use	ОК	27.94 TB	20.05 TB
8. Legnaro - dCache	ALICE::Legnaro::dCache	dCache (disk), general use	ОК	5.215 TB	930 GB
9. NDGF - dcache	ALICE::NDGF::dcache	dCache (disk), general use	ОК	23.28 TB	8.82 TB
10. NIHAM - File	ALICE::NIHAM::File	xrootd (disk), general use	ОК	39.12 TB	3.824 TB
11. Prague - Disk	ALICE::Prague::Disk	xrootd (disk), general use	ОК	1.267 TB	94.28 GB
12. Torino - DPM	ALICE::Torino::DPM	DPM (disk), general use	ОК	16.78 TB	1.015 TB
Total			12	1.088 PB	517 TB

Production practices

- For efficient analysis the ESDs + friends should be on spinning media
- So far, the predominantly used storage was MSS@CERN
 - This is quickly changing in view of the rapid deployment of disk storage at T2s
- The output from the presently running productions (LHC08t: <u>MUON Cocktail pp, MB</u> and LHC08p: <u>gamma-jet pp, PYTHIA</u>) is saved at T2 disk storage + copy @T1
- All past productions are staged on request on MSS and replicated to T2 disk storage