Nuclear Symmetry Energy in QCD degree of freedom

Phys. Rev. C87 (2013) 015204 (arXiv:1209.0080) Eur. Phys. J. A50 (2014) 16 in preparation

Quadrangle 2014, CCNU, Wuhan, China September 26, 2014

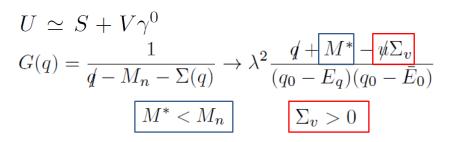
Kie Sang JEONG

Su Houng LEE

Nuclear and Hadron Theory Group Yonsei University

Motivation and Outline

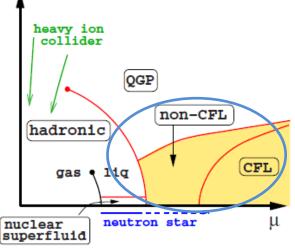
• Nuclear phenomenology – QCD sum rule



1.0 0.8 0.4 0.4 0.4 0.2 0.0 0.8 0.9 1.0 1.1 1.2 1.3 1.4 $M^{2}(\text{GeV}^{2})$ Physical Review C49, 464 (1997)

Extremely high density matter? – QCD itself is main dynamics

Physical Review C49, 464 (1993) (Thomas Cohen et al.)



Cold matter Symmetry Energy from

$$\mathcal{Z}_{\Omega} = \operatorname{Tr} \exp\left[-\beta(\hat{H} - \vec{\mu} \cdot \vec{N})\right]$$
$$= \int [D(\text{fields})] \exp\left[-\int_{0}^{\beta} d\tau \int x^{3} \mathcal{L}_{E}(\text{fields})\right]$$

1.2

Hard Dense Loop resummation Color BCS pairing

Rev. Mod. Phys. 80, 1455 (2008) (M. G. Alford et al.)

Nuclear Symmetry Energy

• From equation of state

Bethe-Weisaker formula

$$\begin{split} m_{tot} &= Nm_n + Zm_p - E_B/c^2 \\ E_B &= a_V A - a_S A^{\frac{2}{3}} - a_C (Z(Z-1)) A^{-\frac{1}{3}} \\ &- a_A I^2 A + \delta(A,Z) \\ I &= (N-Z)/A \end{split}$$

In continuous matter

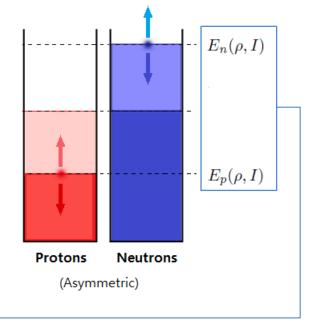
$$\bar{E}(\rho_N, I) = \bar{E}(\rho_N) + \bar{E}_{sym}(\rho_N)I^2 + \cdots$$
$$I = (\rho_n - \rho_p)/\rho$$

$$\overline{E} = \frac{1}{\int d^3k_n d^3k_p} \int d^3k_n d^3k_p \overline{E(\rho_n, \rho_p)}$$

$$\Rightarrow E_{sym} = \frac{1}{2I} \cdot (\overline{E}_n - \overline{E}_p) \quad \text{(Up to linear density order)}$$

- RMFT propagator
 - $G(q) = -i \int d^4 x e^{iqx} \langle \Psi_0 | \mathbf{T}[\psi(x)\bar{\psi}(0)] | \Psi_0 \rangle = \frac{1}{\not{q} M_n \Sigma(q)} \to \lambda^2 \frac{\not{q} + M^* \not{q}\Sigma_v}{(q_0 E_q)(q_0 \bar{E}_0)}$

 Quasi-nucleon on the asymmetric Fermi sea



QCD Sum Rule

Correlation function

 $\Pi(q) \equiv i \int d^4x \ e^{iqx} \langle \Psi_0 | \mathbf{T}[\eta(x)\bar{\eta}(0)] | \Psi_0 \rangle$ = $\Pi_s(q^2, q \cdot u) + \Pi_q(q^2, q \cdot u) \not q + \Pi_u(q^2, q \cdot u) \not q$

 $\eta(x) = \epsilon_{abc} [u_a^T(x) C \gamma_\mu u_b(x)] \gamma_5 \gamma^\mu d_c(x)$ Ioffe's interpolating field for proton

• Energy dispersion relation and OPE

$$\longrightarrow \Pi_{i}(q_{0}, |\vec{q}|) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} d\omega \frac{2 \text{Im} \Pi_{i}(\omega, |\vec{q}|)}{\omega - q_{0}} + \text{polynomials}$$

Contains all possible hadronic resonance states in QCD degree of freedom

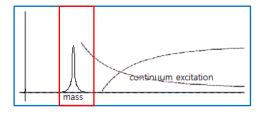
• Phenomenological ansatz in hadronic degree of freedom

 $\rightarrow \Pi(q_0, |\vec{q}|) \sim \frac{1}{(q^{\mu} - \tilde{\Sigma}_v^{\mu})\gamma_{\mu} - M_N^*}$

Equating both sides, hadronic quantum number can be expressed in QCD degree of freedom

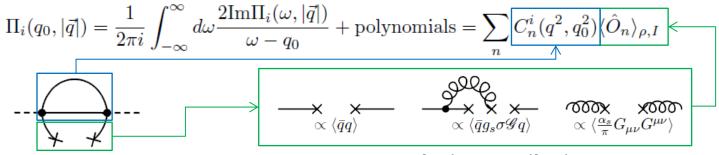
• Weighting - Borel transformation

$$\mathcal{B}[\Pi_i(q_0, |\vec{q}|)] \equiv \lim_{\substack{-q_0^2, n \to \infty \\ -q_0^2/n = M^2}} \frac{(-q_0^2)^{n+1}}{n!} \left(\frac{\partial}{\partial q_0^2}\right)^n \Pi_i(q_0, |\vec{q}|)$$



QCD Sum Rule

Operator Product Expansion



Non-perturbative contribution

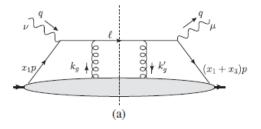
In-medium condensate near normal nuclear density

 $\langle \hat{O}_{u,d} \rangle_{\rho,I} = \langle \hat{O}_{u,d} \rangle_{\text{vac}} + (\langle p | \hat{O}_0 | p \rangle \mp \langle p | \hat{O}_1 | p \rangle I) \rho$

Medium property can be accounted by nucleon expectation value x density

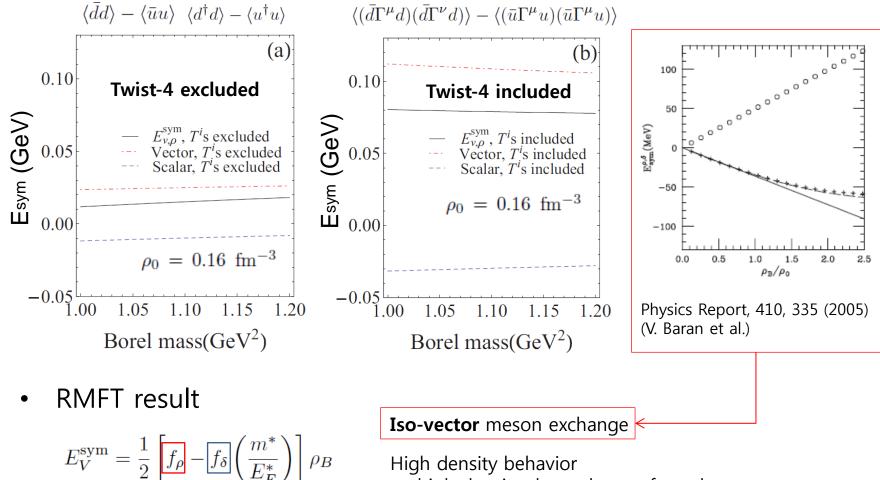
Multi-quark operators (twist-4)

 $\langle (\bar{q}_1 \gamma^{\alpha} \gamma_5 t^A q_1) (\bar{q}_2 \gamma^{\beta} \gamma_5 t^A q_2) \rangle_p$ can be estimated from $\langle (\bar{q}_1 \gamma^{\alpha} t^A q_1) (\bar{q}_2 \gamma^{\beta} t^A q_2) \rangle_p$ DIS experiments data



Nuclear Symmetry Energy from QCD SR

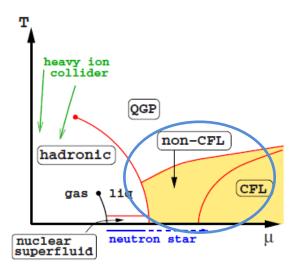
• Iso-vector scalar / vector decomposition



-> high density dependence of condensates

At extremely high density?

• QCD phase transition



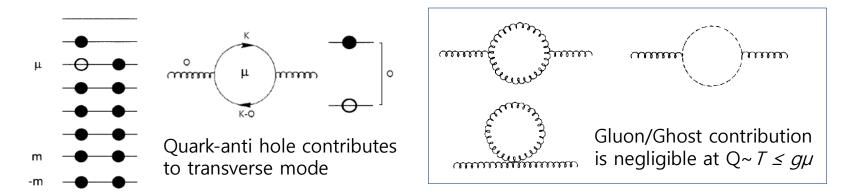
- In $1/\mu \ll 1/\Lambda_{QCD}$ region, QCD can be immediately applicable
- Statistical partition function for dense QCD $Z_{\Omega} = \operatorname{Tr} \exp \left[-\beta (\hat{H} - \vec{\mu} \cdot \vec{N}) \right]$ $= \int [D(\text{fields})] \exp \left[-\int_{0}^{\beta} d\tau \int x^{3} \mathcal{L}_{E}(\text{fields}) \right]$
- Normal QM phase BCS paired phase
- Euclidean Lagrangian for dense QCD at normal phase

$$\mathcal{L}_{E} = \frac{1}{4} F^{a}_{\mu\nu} F^{a}_{\mu\nu} + \frac{1}{2\xi} (\partial_{\mu} A^{a}_{\mu})^{2} + \bar{\eta}^{a} (\partial^{2} \delta_{ab} + g f_{abc} \partial_{\mu} A^{c}_{\mu}) \eta^{b} + \sum_{f}^{n_{f}} \left[\psi^{\dagger}_{f} \partial_{\tau} \psi_{f} + \bar{\psi}_{f} (-i\gamma^{i}\partial_{i} + m_{f}) \psi_{f} - \mu_{f} \psi^{\dagger}_{f} \psi_{f} - g \bar{\psi}_{f} \mathcal{A} \psi_{f} \right] \frac{\int d^{4}Q}{\int d^{4}Q} = \pi \sum_{f} \int d^{3}q \qquad (\text{For ferm}) \psi_{f} - \mu_{f} \psi^{\dagger}_{f} \psi_{f} - g \bar{\psi}_{f} \mathcal{A} \psi_{f}$$

 $\int \frac{d^4Q}{(2\pi)^4} \equiv T \sum_n \int \frac{d^3q}{(2\pi)^3}, \quad Q_\mu = (-\omega, \vec{q}) \qquad \begin{array}{l} \omega_n = (2n+1)\pi/\beta \quad \text{(For fermion)} \\ \omega_n = 2n\pi/\beta \quad \text{(For boson)} \end{array}$ Continuous energy integration -> Discrete sum over Matsubara frequency

Hard Dense Loop resumation

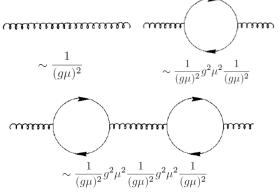
• Quark-hole excitation is dominant $(Q \sim T \leq g\mu)$



• Gluon self energy in cold matter $(Q \sim T \leq g\mu)$

$$\Pi_{\mu\nu}(Q) = g^{2} \operatorname{Tr} \left[\gamma_{\mu} S_{F}(K) \gamma_{\nu} S_{F}(K-Q) \right]$$
$$= \underbrace{\frac{1}{2} g^{2} \left(\sum_{f} \frac{\mu_{f}^{2}}{\pi^{2}} \right)}_{f} \int \frac{d\Omega}{4\pi} \left(\delta_{\mu 4} \delta_{\nu 4} + \hat{K_{\mu}} \hat{K_{\nu}} \frac{i\omega}{Q \cdot \hat{K}} \right)$$
$$\sim g^{2} \mu^{2} \text{ order}$$

Phys. Rev. D.53.5866 (1996) C. Manuel Phys. Rev. D.48.1390 (1993) J. P. Blaizot and J. Y. Ollitrault



All equivalent 1PI diagrams should be resumed!

Hard Dense Loop resumation

• Projection along polarization

Euclidean propagator

$$*D_{\mu\nu} = \frac{1}{Q^2 + \delta\Pi^L} P^L_{\mu\nu} + \frac{1}{Q^2 + \delta\Pi^T} P^T_{\mu\nu} + \frac{1}{f_e} \frac{Q_\mu Q_\nu}{Q^2} \qquad \qquad P^T_{ij} = \delta_{ij} - \hat{q}_i \hat{q}_j, P^T_{44} = P^T_{4i} = 0$$
$$P^L_{\mu\nu} = \delta_{\mu\nu} - \frac{Q_\mu Q_\nu}{Q^2} - P^T_{\mu\nu}$$

Longitudinal and transverse part

$$\delta\Pi^{L}(Q) = 2\sum_{f} \left(\frac{1}{2}g^{2}\frac{\mu_{f}^{2}}{\pi^{2}}\right) \frac{Q^{2}}{q^{2}} \left(1 - \left(\frac{i\omega}{q}\right)Q_{0}\left(\frac{i\omega}{q}\right)\right) \quad \text{In w->0 limit} \quad \Rightarrow 2m_{g}^{2} = g^{2}\frac{\mu_{f}^{2}}{\pi^{2}}$$
$$\delta\Pi^{T}(Q) = \sum_{f} \left(\frac{1}{2}g^{2}\frac{\mu_{f}^{2}}{\pi^{2}}\right) \left(\frac{i\omega}{q}\right) \left[\left(1 - \left(\frac{i\omega}{q}\right)^{2}\right)Q_{0}\left(\frac{i\omega}{q}\right) + \left(\frac{i\omega}{q}\right)\right] \quad \Rightarrow 0$$

• Debye mass and effective Lagrangian

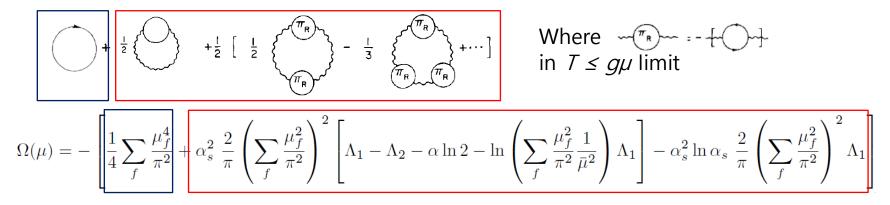
Effective Lagrangian for soft gluon in cold dense matter

$$\mathcal{L} = -\frac{1}{4}F^2 \to \frac{1}{2}A_{\mu}(-Q^2g^{\mu\nu} + 2m_g^2P_L^{\mu\nu} + O(\omega/q)P_T^{\mu\nu} + \cdots)A_{\nu}$$

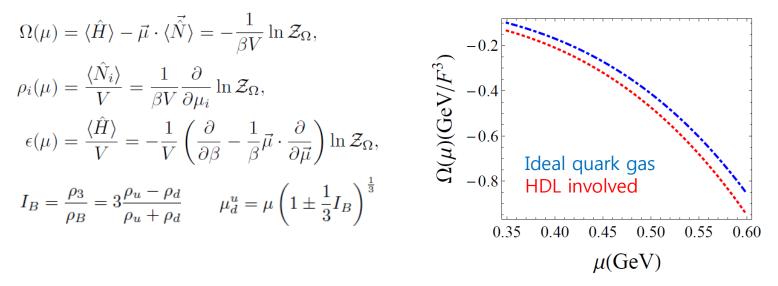
Debye mass from hard(dense) quark loop

HDL resumed thermodynamic potential

• Relevant ring diagrams



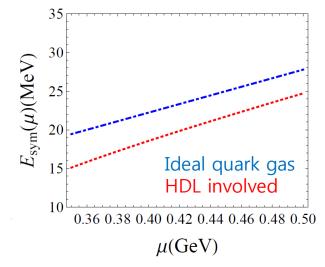
• Thermodynamic quantities can be obtained from $\Omega(\mu)$



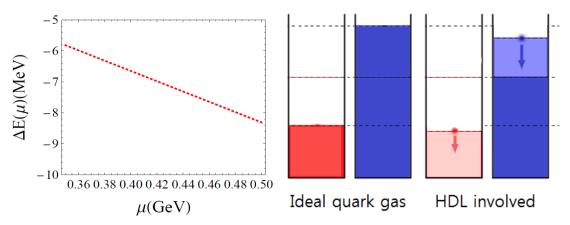
Symmetry Energy at normal phase

Symmetry Energy

$$\frac{\epsilon(\mu, I_B)}{\rho(\mu, I_B)} = \frac{E(\mu, I_B)}{N_B}$$
$$= \bar{E}(\mu, I_B) = \bar{E}(\mu) + \bar{E}_{sym}(\mu)I_B^2 + \cdots$$
$$\bar{E}_{sym}(\mu) = \frac{1}{2!}\frac{\partial^2}{\partial I_B^2}\bar{E}(\mu, I_B).$$
$$= \tilde{E}_{sym}^{q,0}(\mu) - \tilde{E}_{sym}^{g,HDL}(\mu)$$



• HDL correction suppress Quasi-Fermi sea



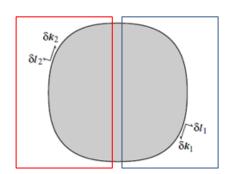
As density becomes higher, suppression becomes stronger

The difference between quasi-Fermi seas becomes smaller

- -> Costs less energy than ideal gas
- -> Reduced symmetry energy

Color Superconductivity

• BCS Pairing near Fermi sea



In terms of effective interaction near Fermi sea $S_{4q} \sim (\psi^{\dagger}(-p_f)\psi(-p_i)) (\psi^{\dagger}(p_f)\psi(p_i))$

is marginal along to Fermi velocity

- Fermion conjugated fermion interaction
- When V<0 two states form a condensate (gap)
- Nambu-Gorkov Formalism

$$\mathcal{S}_{BCS} \sim \frac{1}{2} \left[\psi(-p)^T C \Delta(p) \psi(p) + \psi(p) \tilde{\Delta}(p) C \bar{\psi}^T(-p) \right]$$

Inverse propagator of $\Psi = (\psi, \overline{\psi}^T)$

Diagrammatically described gapped quasi-state

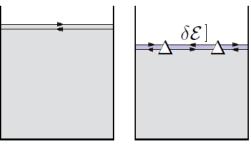
$$S^{-1}(q) = \begin{pmatrix} \mathbf{q} + \mathbf{\mu} - m & \overline{\Delta} \\ \Delta & (\mathbf{q} - \mathbf{\mu} + m)^T \end{pmatrix}$$

$$\Delta \overline{\Delta} = \overline{\Delta} = S_{\Delta}(l) = \frac{l_0 + l_v}{l_0^2 - l_v^2 - \Delta^2} \gamma_0$$

In Wilsonian high density effective formalism

Color BCS paired state

• BCS Pairing locks the gapped quasi-states



Normal Phase

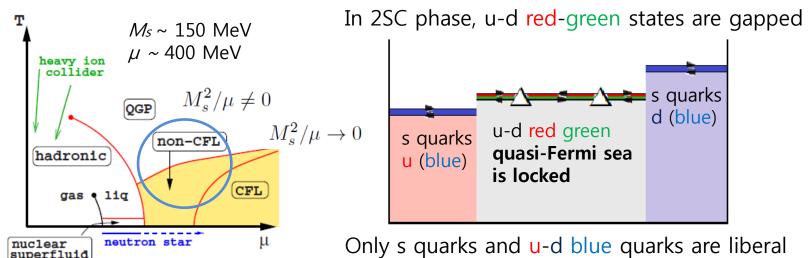
Paired Phase

 In QCD, anti-triplet gluon exchange interaction is attractive (V<0)

•
$$\langle \psi_a^{\alpha} C \gamma_5 \psi_b^{\beta} \rangle \sim \Delta_1 \epsilon^{\alpha \beta 1} \epsilon_{ab1} + \Delta_2 \epsilon^{\alpha \beta 2} \epsilon_{ab2} + \Delta_3 \epsilon^{\alpha \beta 3} \epsilon_{ab3}$$

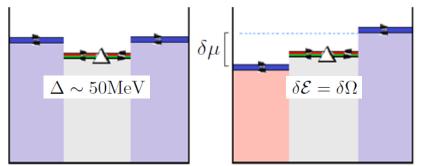
• In non negligible M_s^2/μ , **2SC** state is favored

• 2 color superconductivity



Asymmetrizing in 2SC phase

• Only Blue state (1/3) can affect iso-spin asymmetry

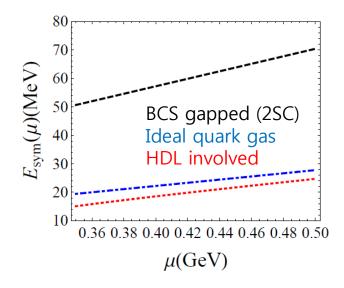


- BCS phase remains in $\delta\mu < (1/\sqrt{2})\Delta \sim \Lambda$ (Phys. Rev. Lett. 9, 266 (1962) A. M. Clogston)
- Only u-d blue states can be asymmetrized
- The other 4 gapped quasi-states are locked

• In HDET formalism
$$\delta \mathcal{E} = \delta \Omega = -\sum_{ud,rg} \frac{\mu_f^2}{\pi^2} \left[\Lambda \sqrt{\Lambda^2 + \Delta^2} + \Delta^2 \ln((\Lambda + \sqrt{\Lambda^2 + \Delta^2})/\Delta) \right]$$

• Symmetry energy

$$\frac{\epsilon(\mu, \Delta, I_{B_{\Delta}})}{\rho(\mu, \Delta, I_{B_{\Delta}})} = \frac{E(\mu, \Delta, I_{B_{\Delta}})}{N_{B_{\Delta}}}$$
$$= \bar{E}(\mu, \Delta) + \bar{E}_{sym}(\mu, \Delta)I_{B_{\Delta}}^{2} + \cdots$$
$$\bar{E}_{sym}(\mu, \Delta) = \frac{1}{2}\frac{\partial^{2}}{\partial I_{B_{\Delta}}^{2}}\bar{E}_{\Delta}(\mu, I_{B_{\Delta}})$$
$$I_{B_{\Delta}} = 3\frac{\rho_{d} - \rho_{u}}{\rho_{d} + \rho_{u}} \times \frac{1}{3}$$



Quasi-fermion state in 2SC phase

- Meissner mass effect? ۲ $S_{\Delta}(l) = \frac{l_0 + l_v}{l_0^2 - l_v^2 - \Delta^2} \gamma_0$ Quasi-fermion in gapped state $S(l) = \frac{l_0 + l_v}{l_0^2 - l_v^2} \gamma_0$ Fermion in ungapped state Gapped states and dense loop ullet1) If gap size is quite large $\Delta \sim g \mu$ mm -> matter loop do not have hard contribution mm-> do not need resummation -> reduction vanish Δ $\sim mm$ mm mm 2) But if gap size is quite small $\Delta < g\mu$ -> needs resummation -> reduction remains mm mm3) For ungapped quark loop -> reduction remains
- High density effective Lagrangian

$$\mathcal{L}_D = \sum_{\vec{v}}' \left[\psi^{\dagger} i V \cdot D \psi - \psi^{\dagger} \frac{1}{2\mu + i \tilde{V} \cdot D} D_{\perp}^2 \psi \right]$$

Irrelevant high energy excitation has been integrated out

Incorporating Nambu-Gorkov formalism

• By introducing Nambu-Gorkov formalism (G. Nardulli et al, PLB524.144)

Invariant coupling and gap Lagrangian $\langle \psi_a^{\alpha} C \gamma_5 \psi_b^{\beta} \rangle \sim \Delta_1 \epsilon^{\alpha\beta 1} \epsilon_{ab1} + \Delta_2 \epsilon^{\alpha\beta 2} \epsilon_{ab2} + \Delta_3 \epsilon^{\alpha\beta 3} \epsilon_{ab3}$

$$\mathcal{L}_{\Delta} = -\frac{\Delta}{2} \psi^T C \epsilon \psi \epsilon \quad -(L \to R) + \text{h.c.} \quad \langle \psi_{\alpha i}^{LT} C \psi_{\beta j}^L \rangle = -\langle \psi_{\alpha i}^{RT} C \psi_{\beta j}^R \rangle = \frac{\Delta}{2} \epsilon_{\alpha \beta 3} \epsilon_{ij3}$$

2SC description by linear combination of Gellman matrices

$$\psi_{+,\alpha i} = \sum_{A=0}^{5} \frac{(\tilde{\lambda}_A)_{\alpha i}}{\sqrt{2}} \psi_+^A \qquad \tilde{\lambda}_0 = \frac{1}{\sqrt{3}} \lambda_8 + \sqrt{\frac{2}{3}} \lambda_0; \quad \tilde{\lambda}_A = \lambda_A \left(A = 1, 2, 3\right); \quad \tilde{\lambda}_4 = \frac{\lambda_{4-i5}}{\sqrt{2}}; \quad \tilde{\lambda}_5 = \frac{\lambda_{6-i7}}{\sqrt{2}} \psi_+^A \qquad \tilde{\lambda}_{1,\alpha} = \frac{1}{\sqrt{3}} \lambda_{1,\alpha} = \frac{\lambda_{1,\alpha}}{\sqrt{2}} \psi_+^A \qquad \tilde{\lambda}_{1,\alpha} = \frac{1}{\sqrt{3}} \lambda_{1,\alpha} = \frac{\lambda_{1,\alpha}}{\sqrt{2}} \psi_+^A \qquad \tilde{\lambda}_{1,\alpha} = \frac{1}{\sqrt{3}} \lambda_{1,\alpha} = \frac{\lambda_{1,\alpha}}{\sqrt{2}} \psi_+^A \qquad \tilde{\lambda}_{1,\alpha} = \frac{1}{\sqrt{3}} \lambda_{1,\alpha} = \frac{1}{\sqrt{3}} \lambda_{1,\alpha}$$

With 2 component Nambu-Gorkov field

$$\chi = \begin{pmatrix} \psi_+ \\ C\psi_-^* \end{pmatrix}$$
 Here + and – represents Fermi velocity, not energy eigenstate

Nambu-Gorkov type description can be written as

$$\mathcal{L}_{D} = \sum_{\vec{v}} \sum_{A,B=0}^{5} \chi^{A\dagger} \begin{pmatrix} iTr[\tilde{T}_{A}V \cdot D\tilde{T}_{B}] & \Delta_{AB} \\ \Delta_{AB} & iTr[\tilde{T}_{A}^{*}\tilde{V} \cdot D^{*}\tilde{T}_{B}^{*}] \end{pmatrix} \chi^{B} + (L \to R)$$

$$\Delta_{AB} = \frac{\Delta}{2} Tr[\epsilon \sigma_{A}^{T} \epsilon \sigma_{B}] \quad (A, B = 0, ...3) \\ \Delta_{AB} = 0 \quad (A, B = 4, 5) . \qquad \tilde{T}_{A} = \frac{\tilde{\lambda}_{A}}{\sqrt{2}} \quad (A = 0, ..., 5)$$

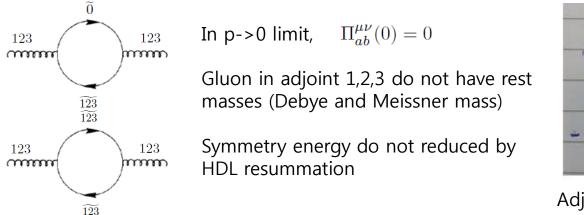
Modification of gluon self energy

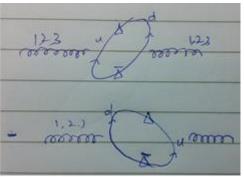
• Gluon self energy in HDET

$$\begin{split} i\Pi^{\mu\nu}_{ab}(p) &= -2g^2 \sum_{\nu} \frac{4\pi\mu^2}{(2\pi)^4} \int d^2l \frac{1}{(p_0 + l_0)^2 - (p_{\parallel} + l_{\parallel})^2 - \Delta_C^2 + i\epsilon} \frac{1}{l_0^2 - l_{\parallel}^2 - \Delta_A^2 + i\epsilon} \\ &\times \left(\bar{V} \cdot (l+p) \bar{V} \cdot lV_{\mu} V_{\nu} k_{CbA} k_{AbC} + \Delta_C \Delta_A V_{\mu} \bar{V}_{\nu} k_{CbA}^* k_{AbC} + (\bar{V} \leftrightarrow V) \right) \end{split}$$

where
$$k_{AbC} = \frac{1}{2} \text{Tr}[\tilde{\lambda}_A \tau_b \tilde{\lambda}_C]$$
 $\tilde{\lambda}_0 = \frac{1}{\sqrt{3}} \lambda_8 + \sqrt{\frac{2}{3}} \lambda_0; \tilde{\lambda}_A = \lambda_A (A = 1, 2, 3);$ $\tilde{\lambda}_4 = \frac{\lambda_{4-i5}}{\sqrt{2}}; \tilde{\lambda}_5 = \frac{\lambda_{6-i7}}{\sqrt{2}}$
Gapped Ungapped

• Adjoint color 1,2,3 only couple with gapped states (0,1,2,3)

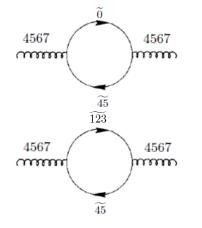




Adjoint 1,2,3 trapped in BCS gap

Modification of gluon self energy

• Adjoint color 4,5,6,7 partially couple with gapped state

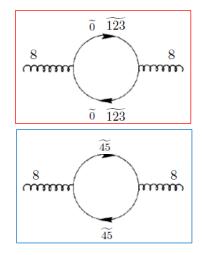


In p->0 limit,
$$\Pi^{00}_{ab}(0) = \frac{3}{2}m_g^2 - \Pi^{ij}_{ab}(0) = \frac{1}{2}m_g^2$$

Gluon in adjoint 4,5,6,7 have Debye and Meissner mass \Rightarrow Reduction from **HDL** remains

 \Rightarrow HDL from ungapped internal line reduces symmetry energy

• Adjoint color 8



In p->0 limit,
$$\Pi_{ab}^{00}(0) = 3m_g^2 - \Pi_{ab}^{ij}(0) = \frac{1}{3}m_g^2$$

Gluon in adjoint 8 have Debye and Meissner mass \Rightarrow HDL from gapped loop do not shift asymmetric Fermi sea \Rightarrow HDL from ungapped loop gives reduction

Reduction from HDL significantly dropped

Reported results (G. Nardulli et al, PLB524.144)

• Self energies have been evaluated in gradient expansion approximation

Gradient expansion

$$\begin{split} \Sigma^{0,\mu\nu} &= k_1 (V^{\mu}V^{\nu}) + k_2 (V^{\mu}\tilde{V}^{\nu}) + (V \to \tilde{V}) ,\\ \Sigma^{\mu\nu} &= a V^{\mu}V^{\nu} \frac{(\tilde{V} \cdot p)^2}{\Delta^2} + b V^{\mu}\tilde{V}^{\nu} \frac{V \cdot p \tilde{V} \cdot p}{\Delta^2} + (V \to \tilde{V}) .\\ \end{split}$$
Table 1 Debye and Meissner masses for the gluons in the 2SC phase

а	$\Pi^{00}(0)$	$-\Pi^{ij}(0)$
1–3	0	0
4–7	$\frac{3}{2}m_g^2$	$\frac{1}{2}m_{g}^{2}$
8	$3m_g^2$	$\frac{1}{3}m_{g}^{2}$

For example, adjoint color in 1,2,3

$$\begin{split} \Pi^{00}_{ij}(p) &= \Pi^{00}_{ij}(0) + \delta \Pi^{00}_{ij}(p) = \delta \Pi^{00}_{ij}(p) \\ &= \delta_{ij} \frac{\mu^2 g^2}{18\pi^2 \Delta^2} |\vec{p}\,|^2, \end{split}$$

$$\Pi_{ij}^{kl}(p) = \Pi_{ij}^{kl}(0) + \delta \Pi_{ij}^{kl}(p)$$

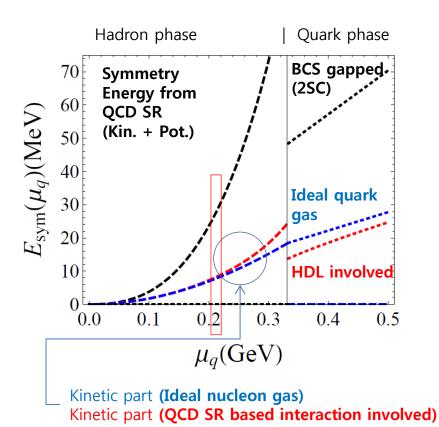
= $\delta_{ij} \delta^{kl} \frac{\mu^2 g^2}{3\pi^2} \left(1 + \frac{p_0^2}{6\Delta^2} \right),$
 $\Pi_{ij}^{0k}(p) = \delta \Pi_{ij}^{0k}(p) = \delta_{ij} \frac{\mu^2 g^2}{18\pi^2 \Delta^2} p^0 p^k$

-> Has a quite large uncertainty in non-vanishing momentum

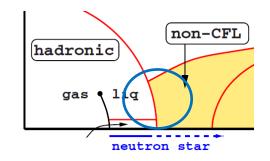
 It is needed analytic description for self energy to obtain correct statistics -> Working in progress

Future goals and Summary

 Nuclear Symmetry Energy in hadron and quark phase



• Quark-hadron continuity?



Important quantum numbers? (e.g. strangeness) -> High density behavior at hadron phase

• Including temperature

Symmetry energy in heated quark matter also may provide fruitful information

Conclusion

- For hadron phase, Nuclear Symmetry Energy can be described in terms of quark and gluon condensate via QCD Sum rule
- For quark phase (in T~0 limit), Symmetry Energy of normal phase can be calculated immediately via thermal QCD. The Debye mass from HDL resummation reduces Symmetry Energy
- BCS paired states lock the gapped quasi-states and favors symmetrized condition (enhancing Symmetry Energy)
- Color blocked gluon (in adjoint color 1,2,3) do not reduce Symmetry Energy