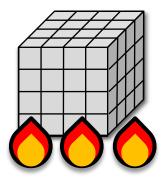
Magnetism and Rotation on the Lattice

Arata Yamamoto

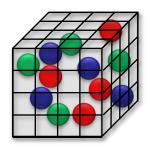
(University of Tokyo)

Extreme QCD

Finite temperature

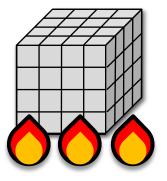


Finite density

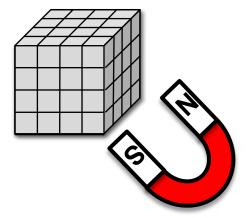


Extreme QCD

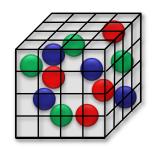
Finite temperature



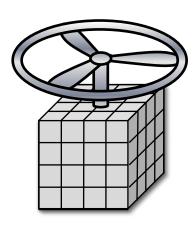
Magnetic field



Finite density

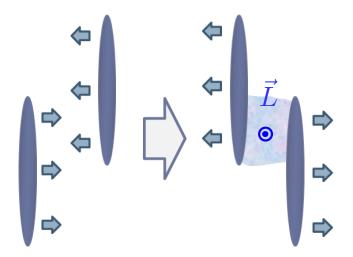


Rotation

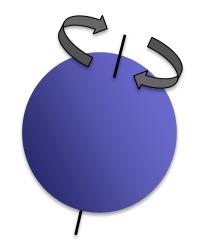


Magnetism and Rotation

peripheral heavy-ion collision



rotating compact star



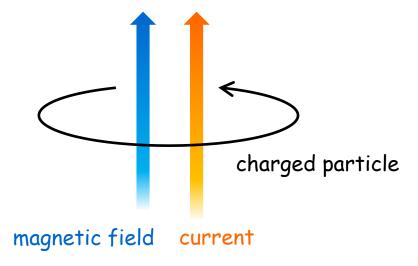
Magnetism and Rotation

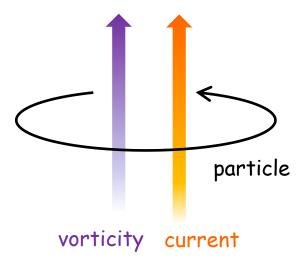
chiral magnetic effect

[Kharzeev McLerran Warringa (2007)]

chiral vortical effect

[Son Surowka (2009)]



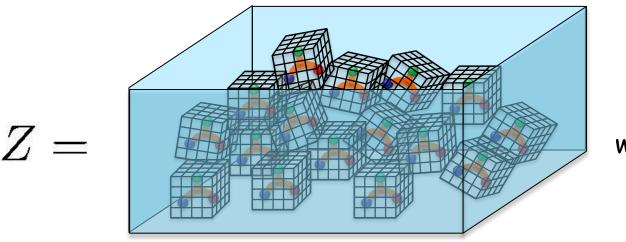


lattice QCD ~ statistical mechanics

lattice QCD ~ statistical mechanics

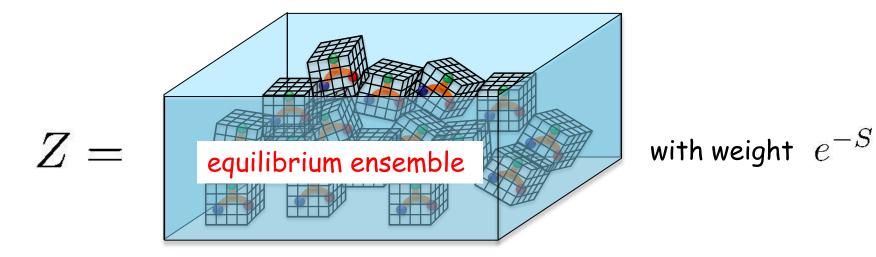
$$Z = \int e^{-S}$$

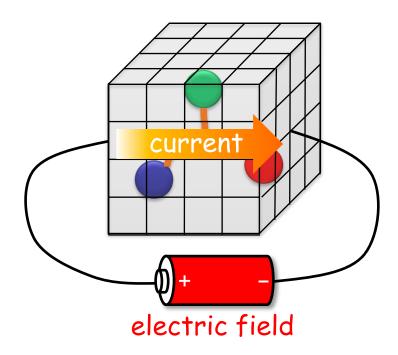
lattice QCD ~ statistical mechanics

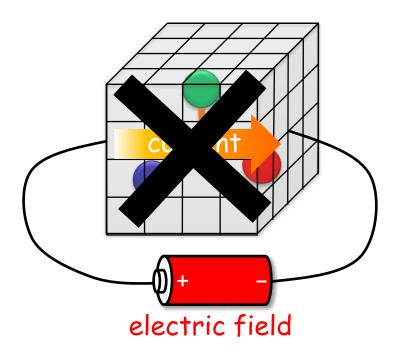


with weight e^{-S}

lattice QCD ~ statistical mechanics



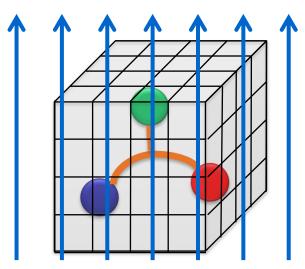




Part I Magnetism

Simulation of magnetism

lattice QCD + background magnetic field



Simulation of magnetism

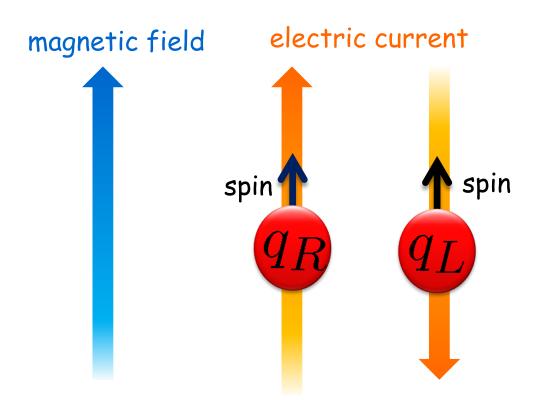
QCD action:

$$S = S_{\text{YM}}[U] + S_{\text{quark}}[\bar{\psi}, \psi, U]$$

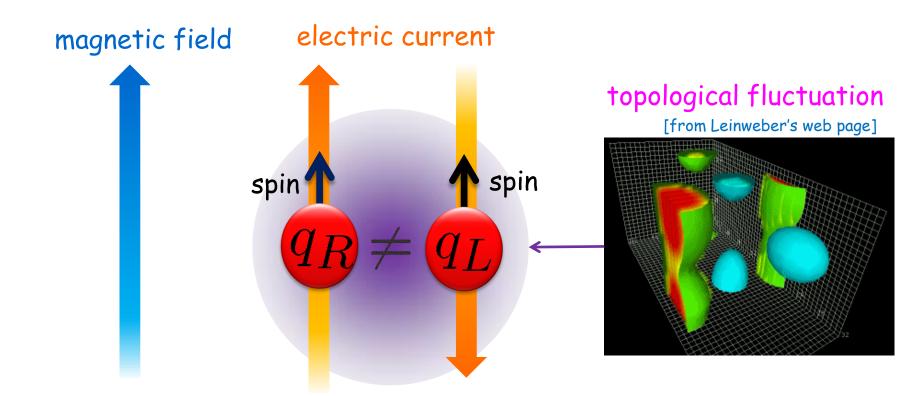
Simulation of magnetism

QCD + background U(1) gauge action:

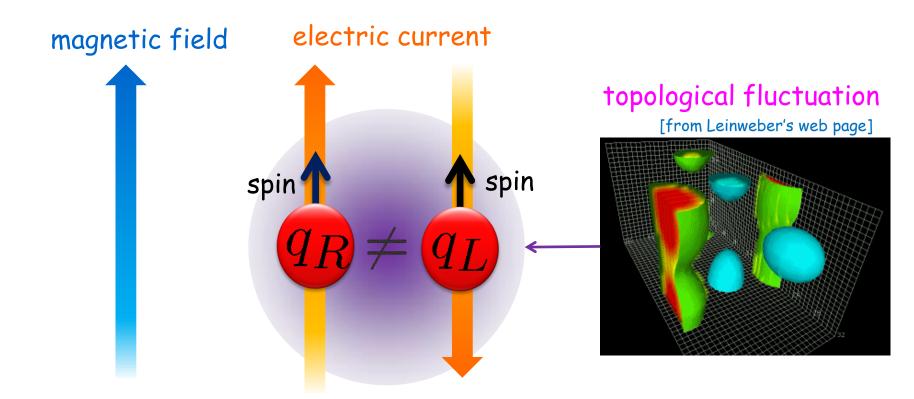
$$S = S_{\mathrm{YM}}[U] + S_{\mathrm{quark}}[ar{\psi}, \psi, U, oldsymbol{u}] + S_{\mathrm{EM}}[oldsymbol{u}]$$
 not dynamical



Globally,
$$\langle J \rangle = 0$$



Globally,
$$\langle J \rangle = 0$$



Globally,
$$\langle J \rangle = 0$$

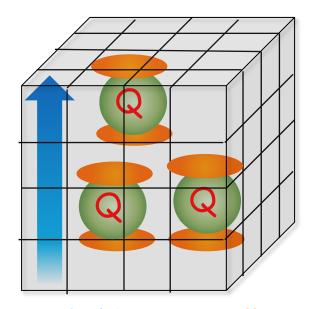
Locally, $\langle J \rangle_{\text{local}} \neq 0$ "event-by-event" electric current

Chiral magnetic effect in lattice QCD

1. topological fluctuation

Buividovich Chernodub Luschevskaya Polikarpov (2009)

Bali Bruckmann Endrödi Fodor Katz Schäfer (2014)

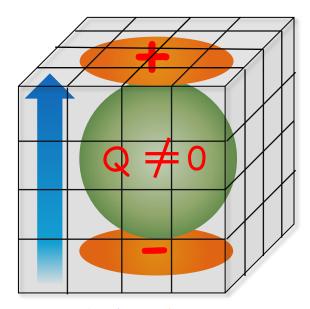


magnetic field current fluctuation

Chiral magnetic effect in lattice QCD

2. fixed topology

Abramczyk Blum Petropoulos Zhou (2009)



magnetic field charge separation

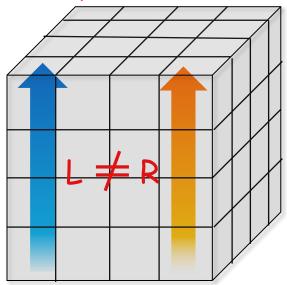
Chiral magnetic effect in lattice QCD

3. chiral chemical potential

AY (2011)

Buividovich (2013)

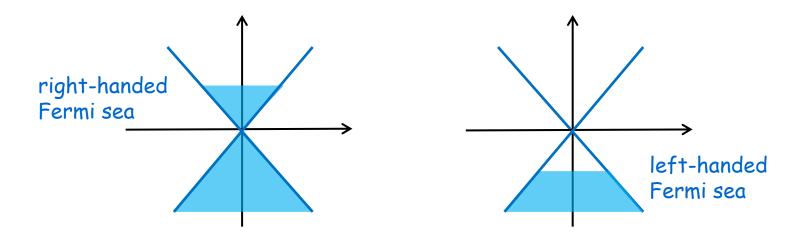
chirally imbalanced matter



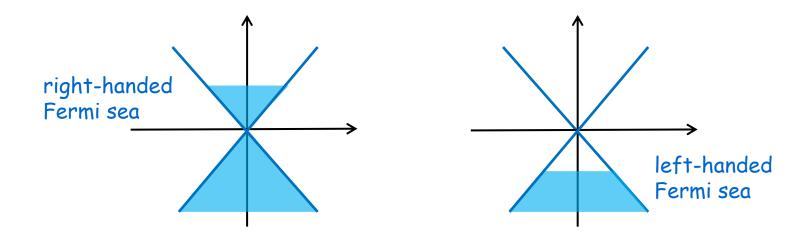
magnetic field

non-dissipative current

$$\mathcal{L}_F = \bar{\psi}(\gamma_\mu D_\mu + m + \mu_5 \gamma_4 \gamma_5)\psi$$

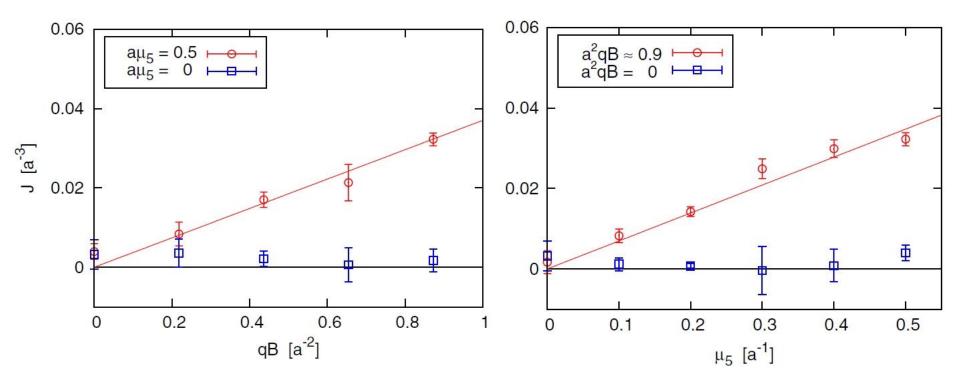


$$\mathcal{L}_F = \bar{\psi}(\gamma_\mu D_\mu + m + \mu_5 \gamma_4 \gamma_5)\psi$$

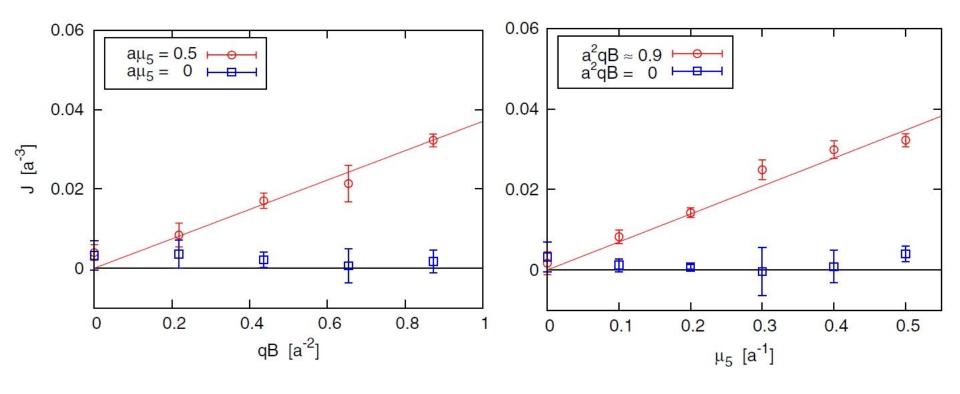


chiral magnetic effect:
$$J = \frac{q}{2\pi^2} \mu_5 B$$

vector current: $J = \langle \bar{\psi} \gamma_{\mu} \psi \rangle$



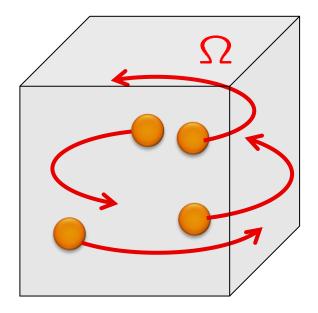
vector current: $J = \langle ar{\psi} \gamma_{\mu} \psi
angle \ \propto N_{
m dof} \mu_5 q B$



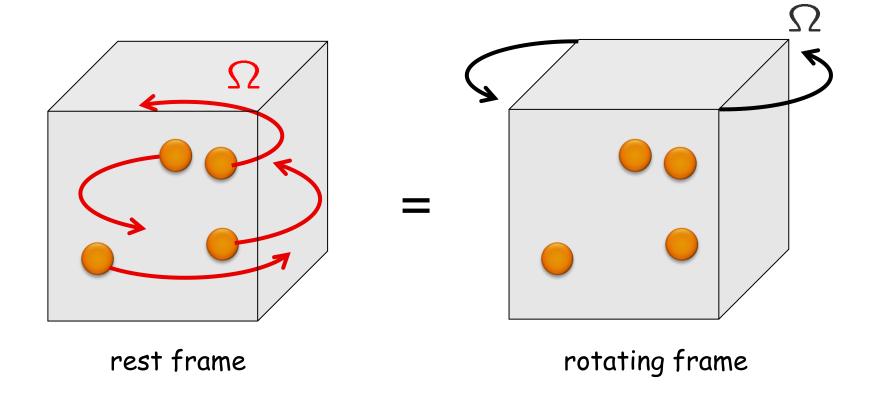
Part II

Rotation

Simulation of rotation



Simulation of rotation



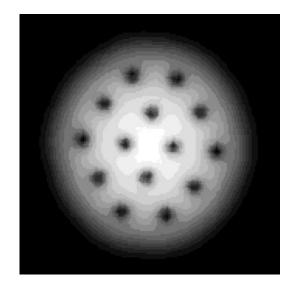
$$d\vec{x}_{\rm rest} = d\vec{x} - \vec{\Omega} \times \vec{x} \, dt$$

Simulation of rotation

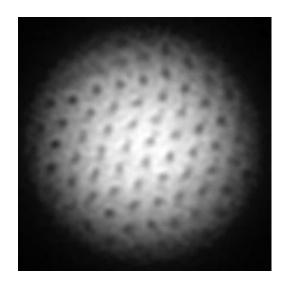
cf.) rotating BEC in condensed matter physics

$$H \to H - \vec{L} \cdot \vec{\Omega}$$

simulation



experiment



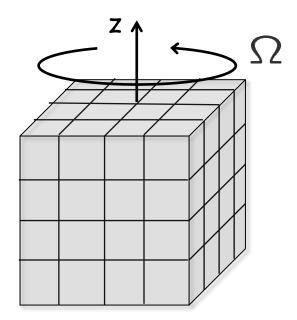
[Zwierlein et. al. (2005)]

[Kasamatsu Tsubota Ueda (2002)]

Rotating lattice QCD

Euclidean rotation:

$$g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & y\Omega \\ 0 & 1 & 0 & -x\Omega \\ 0 & 0 & 1 & 0 \\ y\Omega & -x\Omega & 0 & 1 + r^2\Omega^2 \end{pmatrix}$$



Gluon action

quadratic terms

$$S_{G} = \int d^{4}x \frac{1}{g_{YM}^{2}} \text{tr} \left[(1 + r^{2}\Omega^{2})F_{xy}F_{xy} + (1 + y^{2}\Omega^{2})F_{xz}F_{xz} + (1 + x^{2}\Omega^{2})F_{yz}F_{yz} + F_{x\tau}F_{x\tau} + F_{y\tau}F_{y\tau} + F_{z\tau}F_{z\tau} + 2y\Omega F_{xy}F_{y\tau} - 2x\Omega F_{yx}F_{x\tau} + 2y\Omega F_{xz}F_{z\tau} - 2x\Omega F_{yz}F_{z\tau} + 2xy\Omega^{2}F_{xz}F_{zy} \right]$$

cross terms

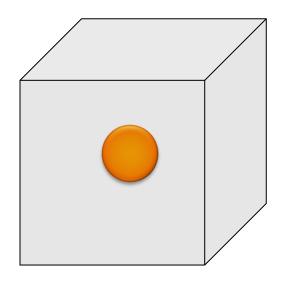
Fermion action

$$S_F = \int d^4x \,\bar{\psi} \left[\gamma^1 D_x + \gamma^2 D_y + \gamma^3 D_z + \gamma^4 D_\tau + \gamma^4 \Omega (xD_y - yD_x) + \gamma^4 i\Omega \frac{\sigma^{12}}{2} \right] \psi$$

orbit-rotation coupling spin-rotation coupling

Angular momentum

rest frame

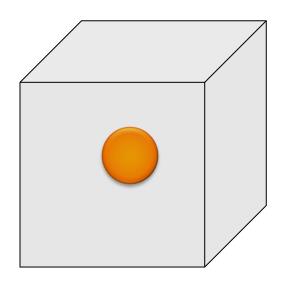


$$\mathcal{L} = \frac{1}{2} m r^2 \dot{\theta}_{\text{rest}}^2$$

$$J = 0$$

Angular momentum

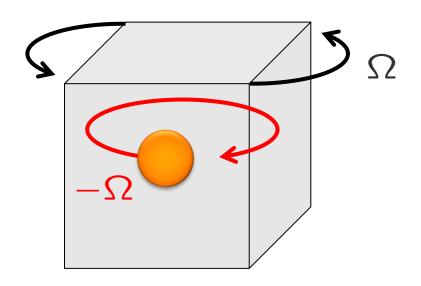
rest frame



$$\mathcal{L} = \frac{1}{2} m r^2 \dot{\theta}_{\text{rest}}^2$$

$$J=0$$

rotating frame



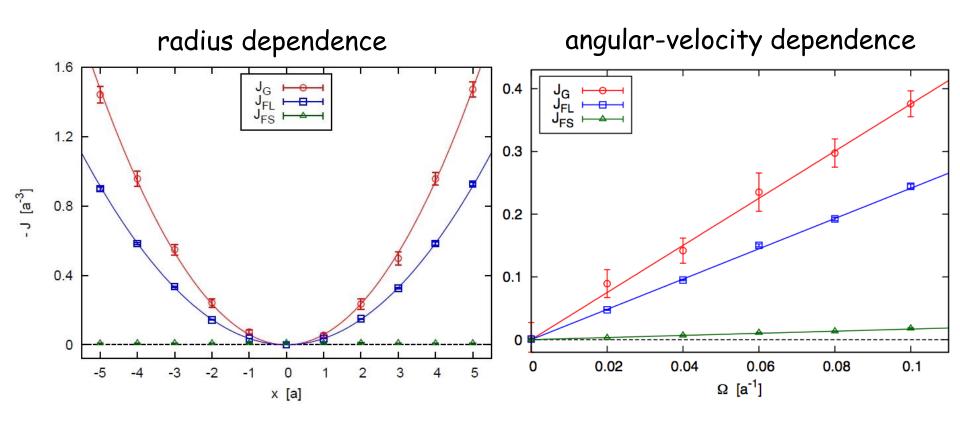
$$\mathcal{L} = \frac{1}{2}mr^2(\dot{\theta} + \Omega)^2$$

$$J = -mr^2\Omega$$

gluon:
$$J_G = \left\langle \frac{1}{g_{\rm YM}^2} {\rm tr}[2yF_{xy}F_{y\tau} - 2xF_{yx}F_{x\tau} + 2yF_{xz}F_{z\tau} - 2xF_{yz}F_{z\tau}] \right\rangle$$

fermion orbit:
$$J_{FL} = \left\langle \bar{\psi} \gamma^4 (x D_y - y D_x) \psi \right\rangle$$

fermion spin :
$$J_{FS} \; = \; \left\langle i \bar{\psi} \gamma^4 \frac{\sigma^{12}}{2} \psi \right\rangle$$



$$J_G = -(0.94 \pm 0.01)a^{-4} \times r^2 \Omega$$

fermion orbit:
$$J_{FL} = -(0.60 \pm 0.01)a^{-4} \times r^2 \Omega$$

fermion spin:
$$J_{FS} = -(0.17 \pm 0.01)a^{-2} \times \Omega$$

cf.) classical particle
$$J=-I\Omega=-mr^2\Omega$$

Chiral vortical effect

No lattice QCD simulation of the chiral vortical effect

cf) free fermion at linear response [Buividovich (2013)]

Summary

Magnetism and rotation are frontiers of lattice QCD.

There are many topics:

- hadron property
- phase diagram
- chiral effects
- vortex nucleation