High Energy Strong Interactions: CCNU School for Young Asian Scientists

Non-Perturbative Heavy Flavor Transport in Medium

Min He (何敏)

Nanjing U. of Sci. & Tech.

Work done in collaboration with Ralf Rapp & Rainer Fries of TAMU

Non-Perturbative HQ Transport Approach

1. Introduction:

Heavy quark probe for hot & dense matter

2. HQ probe: a strongly coupled framework

- Transport coefficient
- HQ diffusion in QGP: Langevin + hydro simulation
- Hadronization: coalescence vs fragmentation
- D-meson diffusion in hadronic phase

3. Heavy ion phenomenology

- RHIC: Non-photonic electrons, Ds vs D mesons
- LHC: D,B mesons, non-photonic electrons

4. Summary

HQ evolution in HIC

primordial hard production, pQCD (FONLL/PYTHIA) mq >> T, Lambda_qcD →number conserved

HQ diffusion in QGP: elastic scatterings with medium **Brownian motion**

$$\frac{\partial f}{\partial t} = \gamma \frac{\partial (pf)}{\partial p} + D \frac{\partial^2 f}{\partial p^2}$$

thermalization rate diffusion coefficient

$$\gamma: \int |T_{Qq}|^2 (1-\cos\theta) f^q \qquad D = \gamma m_Q T$$

$$D = \gamma m_Q T$$

hadronization into D,B mesons via recombination + fragmentation

semi-leptonic decays: non-photonic electrons

Non-Perturbative HQ Transport: flow chart

HQ thermal relaxation rate: T-matrix

♦Open/hidden HF: vacuum spectroscopy reproduced; high energy pQCD recovered

Charm quark relaxation rate: QGP

- **♦** T-matrix resummation **→** color singlet and anti-triplet broad Feshbach resonances up to ~1.5 T_C
- ♦ this resonance correlation → resonance recombination

- T-matrix relaxation rate: a factor
 4-5 larger than LO pQCD at T=1.2 T_c
- **♦** T-dependence: screening potential; p-dependence: less contribution from Feshbach resonance as p increases
- **◆**T-matrix calculation of HQ-gluon scattering [Huggins,Rapp] → ~25% enhancement of the full relaxation rate at low momentum

D-meson thermal relaxation rate: HRG

◆ D + pion, K,eta,rho,omega,K*,N,Delta, empirical s-wave cross sections from effective hadronic theory: Lutz et al., 2004; E.Oset et al. 2007

♦ A~0.1 /fm at T=180 MeV, comparable to the non-perturbative T-matrix calculation of charm quark thermal relaxation rate in QGP

Summarizing charm diffusion coeffi.

- **♦** Ds=T/(mA): T-matrix vs lattice; Minimum around Tc + Quark-hadron duality?!
- ◆The charm diffusion: another perspective of looking into the transport properties of sQGP/dense matter

Medium evolution: hydro RHIC

- ◆ updated ideal 2+1 D hydro based on AZHYDRO Kolb + Heinz, 2003
- ♦ lattice/HRG-PCE EoS + pre-equilibrium flow + compact initial density s(x,y) ~ nBC (x,y) → fast build-up of radial flow + essential saturation of bulk v2 around Tc

- lacktriangle multistrange hadrons ϕ, Ξ, Ω probably freeze out earlier STAR, PRC79,2009
- ◆ multi-strange particles' spectra and v2 fitted at Tch =160 MeV bulk particles' spectra and v2 fitted at Tkin=110 MeV He, Fries,Rapp,2012

HQ diffusion: Langevin simulation

Langevin + hydro simulation down to Tc=170 MeV fluid rest frame updates → boost to lab frame

$$d\mathbf{x} = \frac{\mathbf{p}}{E}dt,$$

$$d\mathbf{p} = -\Gamma(p)\mathbf{p}dt + \sqrt{2D(\mathbf{p} + d\mathbf{p})}dt\rho$$

- **♦** initial HQ distribution: PYTHIA pp + Glauber nBC
- quenching: early stage when medium particles' density is high
- ◆ v2 : develops at later stage when the medium particles' v2 is large

Hadronization: Resonance Recombination

- Hadronization = Resonance formation $c\overline{q} \to D$
 - → <u>consistent with T-matrix findings of resonance</u> <u>correlations towards T</u>
- Realized by Boltzmann equation Ravagli & Rapp, 2007

$$\begin{split} p^{\mu}\partial_{\mu}f_{M}(t,\vec{x},\vec{p}) &= -m\Gamma f_{M}(t,\vec{x},\vec{p}) + p^{0}\beta(\vec{x},\vec{p}),\\ \beta(\vec{x},\vec{p}) &= \int \frac{d^{3}p_{1}d^{3}p_{2}}{(2\pi)^{6}}f_{q}(\vec{x},\vec{p}_{1})f_{\bar{q}}(\vec{x},\vec{p}_{2}) & \text{gain term} \\ &\times \sigma(s)v_{\text{rel}}(\vec{p}_{1},\vec{p}_{2})\delta^{3}(\vec{p}-\vec{p}_{1}-\vec{p}_{2}) \\ &\text{Breit-Wigner} & \sigma(s) &= g_{\sigma}\frac{4\pi}{k^{2}}\frac{(\Gamma m)^{2}}{(s-m^{2})+(\Gamma m)^{2}} \end{split}$$

• Equilibrium limit

$$f_M^{\text{eq}}(\vec{p}) = \frac{E_M(\vec{p})}{m\Gamma} \int d^3x \beta(\vec{x}, \vec{p})$$

♦ Energy conservation + detailed balance

equilibrium mapping between quark & meson distributions

Hadronization: coal. vs frag.

- RRM coalescence:
- --- 4-mom. conservation, correct thermal equilibrium limit
- --- implemented on hydro freezeout hypersurface with full space-mom. correl.

- Diffusion vs coalescence: conceptually consistent
- --- same interaction (T-matrix) underlying diffusion + hadronization
- Fragmentation: incompatible with thermalization
- --- recombination (P_coal(pt)) dominates at low pT but yields to frag. at higher pT

Application & Phenomenology ...

Phenomenology at top RHIC energy

He, Fries, Rapp, Phys.Rev. C86,014903 (2012) He, Fries, Rapp, Phys. Rev. Lett. 110, 112301 (2013)

e ± Spectra @ RHIC

- medium modified D and B mesons:
 c/b diffusion + coal./frag. + hadronic
 diffusion
- semi-leptonic decays $c(b) \rightarrow s(c) + e + nu$

D-meson Hadronic Diffusion

D vs Ds mesons RHIC

- ◆ pronounced D/Ds flow-bump?!
 RRM = an extra interaction, driving D-meson closer to equilibrium
- ◆ Ds RAA ~ 1.5-1.8 at pT~2 GeV strong coupling c-QGP + coalescence + strangeness enhancement (unique valence quark content csbar)
- ◆ Ds freezeout at Tc, D at Tkin
 D vs Ds v2: quantitative measure of charm interaction in hadronic phase
 - →a unique pattern of RAA and v2 of Ds vs D mesons emerges

Application & Phenomenology ...

Phenomenology at the LHC Pb-Pb 2.76 TeV

He, Fries, Rapp, Phys.Lett.B735,445 (2014)

Tuned ideal hydro + FONLL pp baseline + FONLL fragmentations

Hydro tune for the LHC

- lacktriangle p_T-spectra of charged hadrons fine
- \bullet v₂: integrated elliptic flow a good measure of the bulk momentum anisotropy
- **♦** background medium evolution well constrained

LHC D mesons

- \bullet R_{AA}: flow bump at low p_T, amplified by coalescence p_T-dependence shape OK; possible missing radiative energy loss at high pT
- ◆ v2: c-diffusion only accounts for ~50%recombination and hadronic phase diffusion essential

LHC D vs Ds mesons

- ♦ D vs D_s R_{AA} : low p_T , coalescence enhances D_s production in a strangeness-equilibrated, strongly-coupled QGP medium; high p_T , D & D_s tend to the same universal fragmentation
- lacktriangle D R_{AA} in-plane vs out-of-plane: splitting at low p_T reflects finite v₂ high p_T splitting underestimated, indicative of missing radiative energy loss

LHC B mesons & non-prompt Jpsi

LHC HF electrons

- $ightharpoonup R_{AA}$: overpredicted in the D dominant region; fairly good in the B dominant region (elastic e-loss only)
- ♦ v₂: marginally hit data, radiative e-loss?

Application & Phenomenology ...

Phenomenology at RHIC Au-Au 62.4 GeV

He, Fries, Rapp, arXiv:1409.4539 [nucl-th]

Tuned ideal hydro + FONLL pp baseline + FONLL fragmentations

HF electrons RAA & RCP

HF electrons v2

- ♦ No discrepancies can be made out, albeit within rather large error bars in data
- ♦ 0-60% centrality v2: from a Ncoll-weighted average of v2's of the 0-20%, 20-40% and 40-60% centrality bins

Summary

- initial cond. $(pp + N_{coll} , \\ Cronin, \\ shadowing)$
- c-quark diffusion in QGP liquid (T-matrix,
 No K-factor)
- c + q(s) → D(Ds)
 resonance
 recombination;
 Ds freezeout
- D-meson diffusion in hadron liquid

- Conceptual Consistency
- diffusion ↔ hadronization:
 based on the same resonant interaction from T-matrix
- diffusion ↔ bulk medium:
 both based on strongly coupled QGP, non-perturbative
- Application: RHIC & LHC dynamical charm flow features emerge

Backup: space-time evolution of HIC

Backup: Heavy quarks

Backup: HQ probes

- primordial hard production + number conserved

thermalization delayed
$$au_Q pprox rac{m_Q}{T} au_q pprox 6 * au_q \ge au_{QGP}$$

- → Heavy quarks make a direct probe of
- the medium HO diffusion in QGP: elastic scatterings with medium

Hot/Dense Medium c quark Momentum Kicks

Brownian motion: Fokker-Planck Equation

$$\frac{\partial f}{\partial t} = \gamma \frac{\partial (pf)}{\partial p} + D \frac{\partial^2 f}{\partial p^2}$$

$$\gamma: \int |T_{Qq}|^2 (1-\cos\theta) f^q$$

diffusion coefficient

$$D = \gamma m_Q T$$

Hydro tune for the Au-Au 62.4 GeV

- $igoplus p_{T}$ -spectra of pi, p well described, Tkin=130 MeV, initial radial flow tanh(0.035r)
- \bullet v₂: differential flow over-predicted a bit. No viscosity. And tau_0=0.9 fm/c.
- **♦** background medium evolution well constrained

b/c Au-Au 62.4 GeV; Compare Rcp by Duke

b/c=1.9E-3 from FONLL 62.4 GeV, VS b/c=9E-3 from FONLL 200 GeV VS b/c=5E-2 from FONLL 2.76 TeV

FIG. 19: (color online) Heavy flavor electron R_{CP} between centrality 0%–20% and 40%–60% in Au+Au collisions at $\sqrt{s_{NN}} = 62.4$ GeV. The curves are calculated using a model based on energy loss [48].

Backup 1: charm quark Langevin diffusion equilibrium

Backup 2: D-meson RRM equilibrium

Backup 3: D-meson hadronic phase Langevin diffuison equilibrium

