Dielectron Production in Au+Au Collisions at RHIC

Jie Zhao Sep.23 2014

Central China Normal University, Wuhan

Outline

- > Results from 200GeVAu+Au Collisions
- Results from RHIC-Beam Energy Scan
- Summary and Outlook

A Penetrating Probe to Medium

Advantages: EM probe / penetrating – not suffer strong interactions

 (p_T, M) – additional mass dimension, sensitive to different dynamics

 Challenges: Production rate is rare, over many background sources

 integral over time, sensitive to system evolution

Motivation

Provide two dimensions (mass vs p_T)

- ✓ mapping to the collisions dynamics
- ✓ higher mass, earlier production

Low mass region (LMR):

in-medium modifications of vector mesons

chiral symmetry restoration

Intermediate mass region (IMR):

thermal radiation expected to have significant contribution

dominated by charm in p+p, but the contribution is expected to be modified in Au+Au

> High mass region (HMR):

heavy quarkonia Drell-Yan contribution

Motivation - vector meson

NA60, PRL 96 (2006) 162302, PRL 100 (2008) 022302

> in-medium modifications of vector mesons

> chiral symmetry restoration

 ρ life time(~1.3 fm/c) less than hadronic medium(~10 fm/c) - excellent tool

Motivation - thermal radiation

Experimental observables

- production cross section vs (mass, p_T)
- elliptic flow, polarization et al

RHIC

STAR detector

CCNU - Quadrangle2014

Electron Identification

Clean electron PID with a combination of TPC dE/dx and TOF velocity

electron purity ~99% in pp , ~97% in AuAu MinBias.

hadron contamination contribution to the correlated background is small, and has been included in the systematic uncertainties (Au + Au).

Challenges

PHENIX, PRC 81 (2010) 034911;

STAR, PRL 113 (2014)022301;

Low S/B, ~ 1/200 in MinBias Au + Au collisions

Results from RHIC Top Energy

STAR, PRL 113 (2014)022301;

Models show good agreement with data within uncertainty.

Enhancement at ρ like
 region(0.30-0.76 GeV/c2):
 1.77±0.11(stat,)±0.24(sys,)±0.41
 (cocktail) in MinBias Collisions.

Compared with models based on ρ broadening :

1) Model I: by Rapp et al. effective many-body model. [R. Rapp, PoS CPOD2013, 008 (2013)]

2) Model II: microscopic transport model: Parton-Hadron-String -Dynamics (PHSD).

[O. Linnyk et al., Phys. Rev. C 85, 024910 (2012)]

Results from RHIC Top Energy

STAR, PRL 113 (2014)022301;

 ρ like region (A): The enhancement shows weak dependence on centrality and pT.
 ω and φ region (B), (C): Cocktail can reproduce the yield

Results from RHIC Top Energy

1) excess in LMR (MinBias) :

STAR, PRL 113 (2014)022301;

> Broadened ρ model explain can
 STAR data within uncertainties.
 > STAR measurements disfavor a pure vacuum ρ model in 0.3~1
 GeV/c2

2) Npart dependence of excess yield:

ω and φ region (B), (C):
 Yield shows Npart scaling.
 ρ like region (A):

Significant excess. Sensitive to the QCD media dynamics. A power fit shows:

Yield $\propto N^{1.54\pm0.18}$ vart

CCNU - Quadrangle2014

Beam Energy Scan at RHIC

Compared to SPS

Dielectrons from BES

Enhancement in 0.3-0.75 GeV/c² shows a slight decreasing vs. collision energy

- charm contribution increasing significantly with energy

Dielectron Production 19.6-200 GeV

STAR BES white paper

In-medium ρ broadening

R. Rapp: private communications

> Model calculations by Rapp, based on in media broadening of ρ spectra function, expected to depend on total baryon density.

Dielectron Production 19.6-200 GeV

STAR BES white paper, QM14

 \succ in-medium modifications to ρ expected to depend on total baryon density

- > almost constant baryon density from 20-200GeV
- high-statistics BES-II

Possible Charm Modifications at IMR

Central mass spectrum systematically steeper than minbias spectrum at IMR

- indicative of either charm modifications or other sources (thermal radiation?)

Other Evidences of Charm Modifications

- "bump" structure in low p_T D⁰ R_{AA}
- Finite non-photonic electron v_2 at low p_T , and R_{AA} mesurements

Significant charm-medium interactions in Au+Au collisions

Measure Correlated Charms

HFT - topological separation of charm decay electrons from prompt MTD - unique measurement of e- μ correlation – clean to D-D correlation HFT+MTD help to measure the charm correlation directly.: D-D, e-D, μ -D, e- μ

Quantify Thermal Dilepton Properties

Thermal dileptons at IMR (1.1 < M < 3. GeV/c²)

(1) Polarization (angular distribution) to probe the degree of thermalization

 $d\sigma/d\cos\theta \propto 1 + \alpha\cos^2\theta$ E. Shuryak, 1203.1012

Initial Drell-Yan, fully polarized $\alpha=1$ Completely thermalized, isotrop $\alpha=0$

(2) Partonic or Hadronic thermal source – Elliptic flow

$$q\overline{q} \rightarrow l^{+}l^{-} \qquad v_{2}(ll) = 2v_{2}(q)$$

$$\pi\pi \rightarrow l^{+}l^{-} \qquad v_{2}(ll) = 2v_{2}(p) = 4v_{2}(q)$$

Cross section, v_2 , α (M, p_T)

At 2016, RHIC II projected L ~ 20 nb⁻¹ @ 200 GeV STAR recorded mb-equivalent events ~ 84 B (60%) assuming 100% triggering efficiency, 400 MeV/c² bin, σ_{v2} = 1%, σ_{α} = 5%

Summary and Outlook

>Low mass region:

- > Enhancement in Au + Au collisions compared to the cocktail
- > consistent with vector meson in-medium modification calculation

>Intermediate mass region:

> need more precise measurement to constrain charm and QGP thermal radiation contributions,

>RHIC (BES) - systematic measurements

- > LMR enhancement vs. total baryon density.
- > search the onset of sQGP thermal radiation and CP, need more statistics.

Outlook:

> STAR Heavy Flavor Tracker and Muon Telescope Detector upgrades, charm contribution! (D meson, eµ ...)

> RHIC high luminosity and BES-II

BACKUP

Cocktail Comparison

Different generators with the same detector acceptance give consistent cocktails

- some small differences due to decay form factors and detector resolutions

Comparison on Low Mass Enhancement

CCNU - Quadrangle2014

J. Zhao

Centrality / p_T dependence

Enhancement factor (data/cocktail):

- PHENIX: Large enhancement appears in low p_T and central collisions
- STAR: Mild centrality and p_T dependence

LMR enhancement with PHENIX HBD

HBD result in 20-92% centrality bins consistent with previous PHENIX result and also STAR preliminary result

- Looking forward to the HBD result in 0-20% centrality bin

Acceptance Effect

STAR data after PHENIX Φ acceptance: LMR enhancement factor still ~ 2