

Generalized susceptibilities in the 3-d, 3-state Potts model

Xue Pan

In cooperation with Mingmei Xu, and Yuanfang Wu Central China Normal University

CCNU-25.09.2014 1

Outline

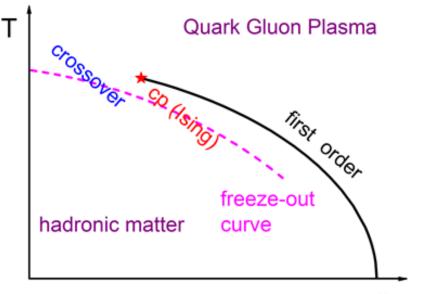
Introduction

Generalized susceptibilities in the Potts model

Finite-size scaling of the susceptibilities

4 Summary

Introduction: generalized susceptibilities

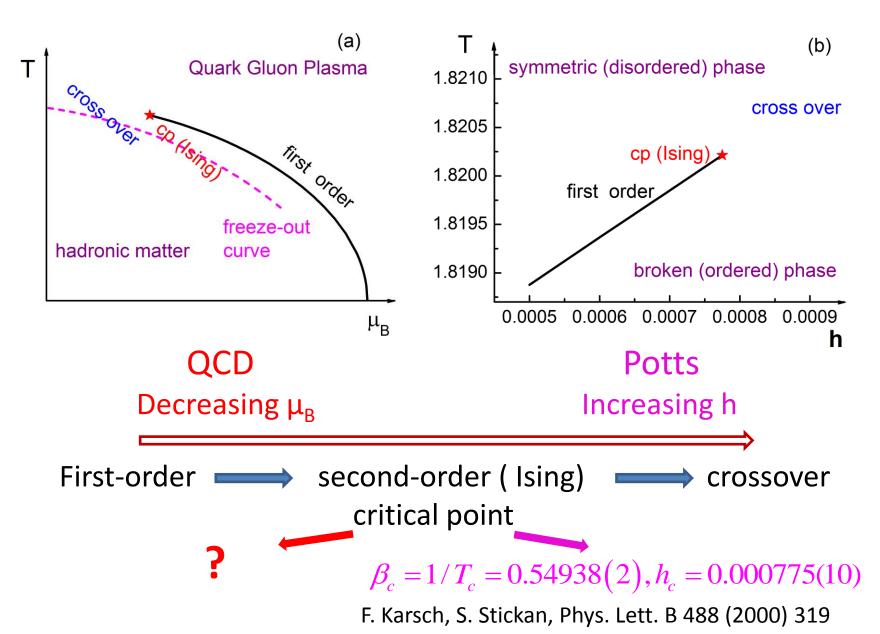


V. Koch, arXiv:0810.2520
M. Cheng et al, PRD 79 (2009) 074505
L. Adamczyk et al. ,
(STAR Collaboration)
Phys. Rev. Lett. 112 (2014) 032302

 μ_{B}

Theory Experiment $VT^{3}\chi_{q,\mu}^{(2)} = \langle (\delta N_{q})^{2} \rangle$ $VT^{3}\chi_{q,\mu}^{(4)} = \langle (\delta N_{q})^{4} \rangle - 3 \langle (\delta N_{q})^{2} \rangle^{2}$ $\delta N_{q} = N_{q} - \langle N_{q} \rangle$

A paradigm of QCD: the 3-d, 3-state Potts model



4

Generalized susceptibilities in the 3-d, 3-state Potts model

4 Definition

$$Z(\beta, h) = \sum_{\{s_i\}} e^{-(\beta E - hM)}, s_i \in \{1, 2, 3\}, \beta = 1/T, h = \beta H$$

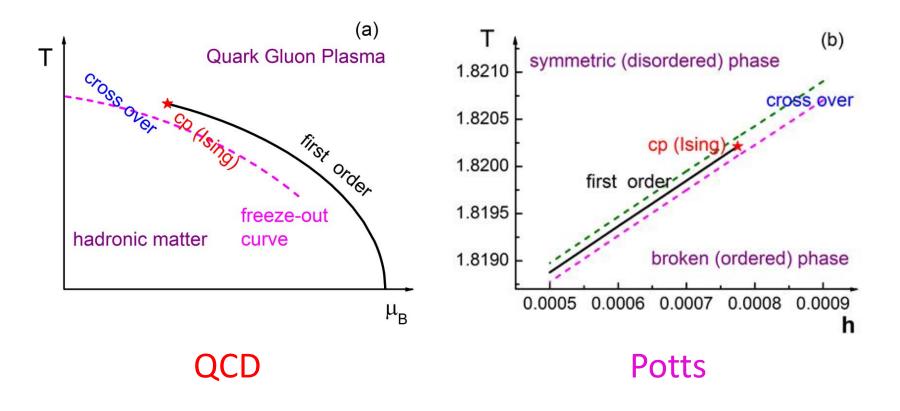
Energy and Magnetization

$$E = -J\sum_{\langle i,j \rangle} \delta(s_i, s_j), M = \sum_i \delta(s_i, s_g)$$

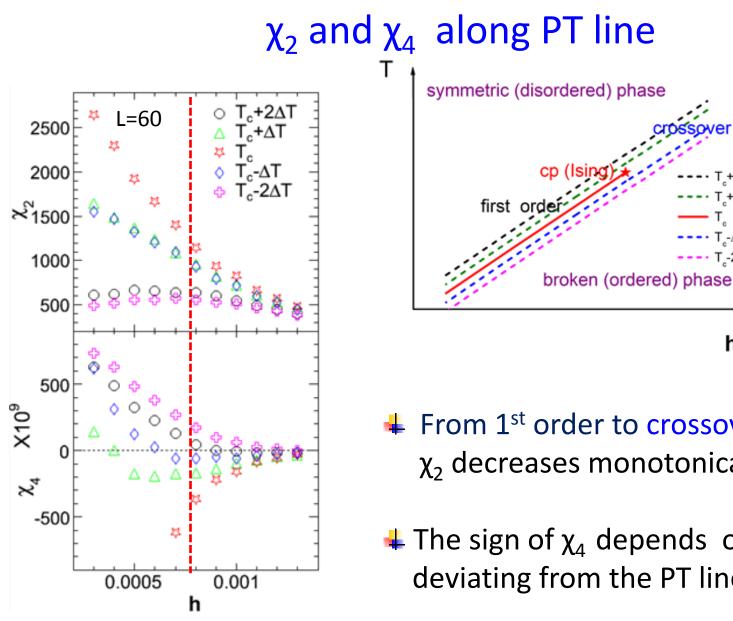
Generalized susceptibility of Magnetization

$$f = -\frac{1}{V} \ln Z \quad \begin{cases} \chi_2 = -\frac{\partial^2 f}{\partial h^2} \Big|_T = \frac{1}{V} \langle (\delta M)^2 \rangle, \quad \delta M = M - \langle M \rangle \\ \chi_4 = -\frac{\partial^4 f}{\partial h^4} \Big|_T = \frac{1}{V} (\langle (\delta M)^4 \rangle - \langle (\delta M)^2 \rangle^2) \end{cases}$$

Question 1



In the 3-d, 3-state Potts model, how will the 2nd and 4th order susceptibilities behave from the first order phase transition side to crossover side?



h From 1st order to crossover transition, χ_2 decreases monotonically

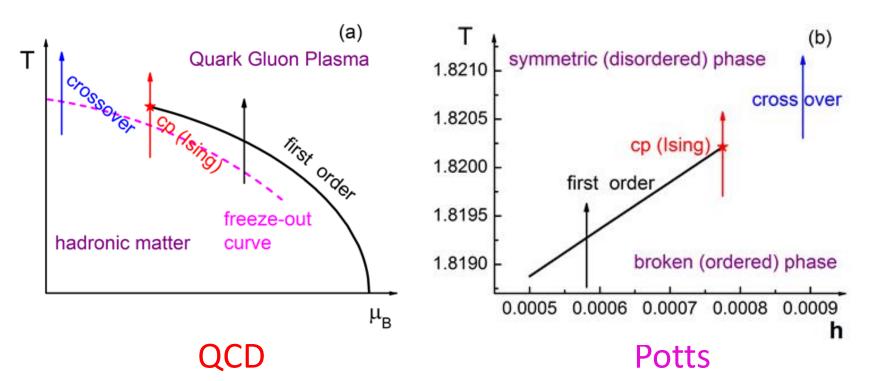
+2∆T

-ΔT T_-2∆T

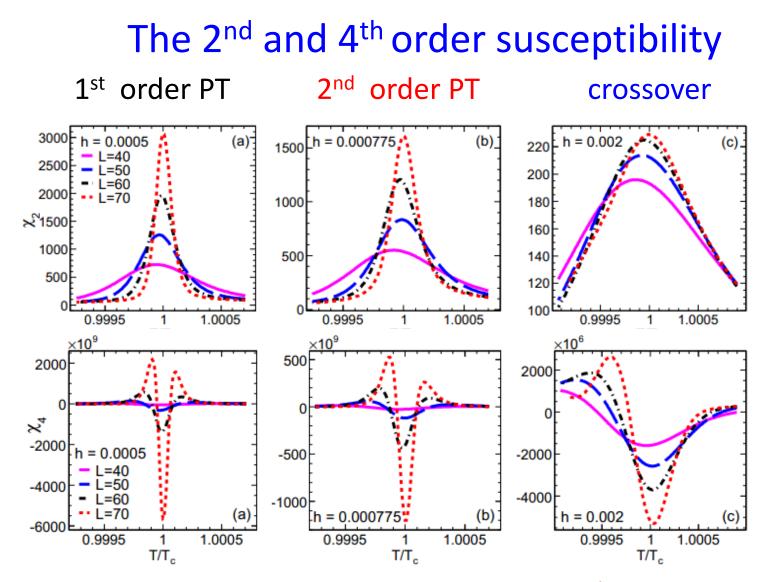
4 The sign of χ_4 depends on the extent deviating from the PT line

1st order $cp \rightarrow crossover$

Question 2

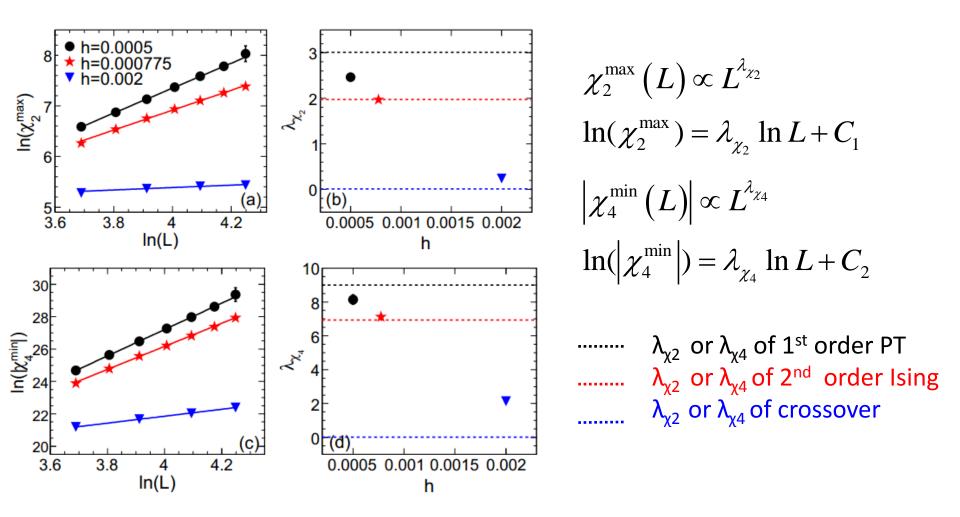


- If it's not along the line from 1st order phase transition side to crossover side, but across the PT line at some fixed external fields of 1st, 2nd order PT and crossover, how will the 2nd and 4th order susceptibilities behave?
- Can we distinguish different type of PT from the 2nd and 4th order susceptibilities?



Non-monotonic behavior are signatures of 2nd order PT, but also can be observed at 1st order PT and crossover
 Quantitatively, their size dependence is different

Finite-size scaling of χ_2



↓ χ₂^{max} and |χ₄^{min}| are fitted well by a straight line at 3 values of h.
 ↓ The exponent of finite-size scaling decreases with increasing h, characterizing the order of PT or crossover.

Summary

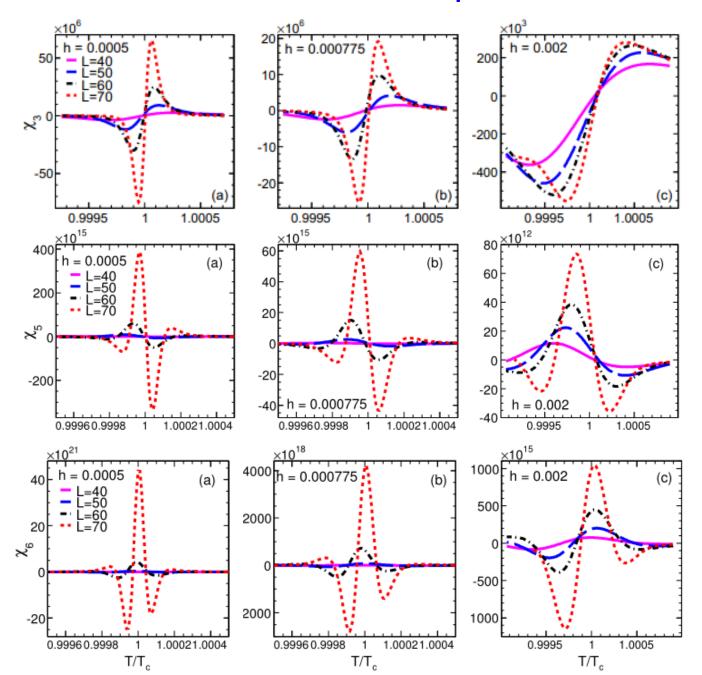
- We studied the 2nd and 4th order susceptibility along the phase transition line, and also in different type of phase transitions in the 3-d, 3-state Potts model.
- **4** The sign of χ_4 is dependent on the extent deviating from the phase transition line. The negative value of χ_4 should be dealt carefully as signals of critical region in this model.
- Peak, oscillation, or sign change of generalized susceptibilities are signatures of 2nd order PT, but also can be observed at 1st order PT and crossover when crossing the phase transition line of a system of finite-size.
- Finite-size scaling exponents of the generalized susceptibilities characterize the order of the phase transitions.

Summary

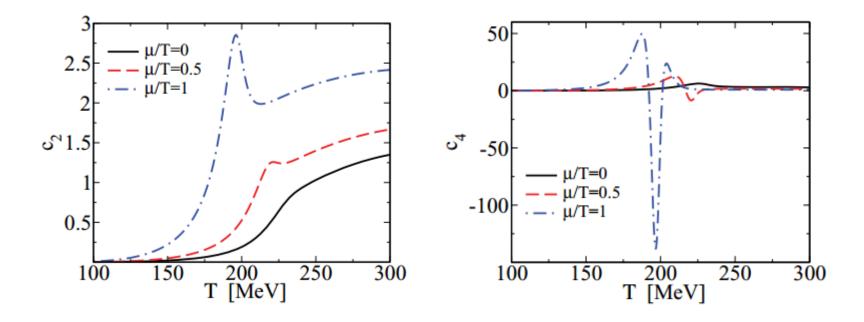
- We studied the 2nd and 4th order susceptibility along the phase transition line, and also in different type of phase transitions systematically in the 3-d, 3-state Potts model.
- 4 The sign of χ_4 is dependent on the extent deviating from the phase transition line. The negative value of χ_4 should be dealt carefully as signals of critical region in this model.
- Peak, oscillation, or sign change of generalized susceptibilities are signatures of 2nd order PT, but also can be observed at 1st order PT and crossover when crossing the phase transition line of a system of finite-size.
- Finite-size scaling exponents of the generalized susceptibilities characterize the order of the phase transitions.

Thanks for your attention!

Backup

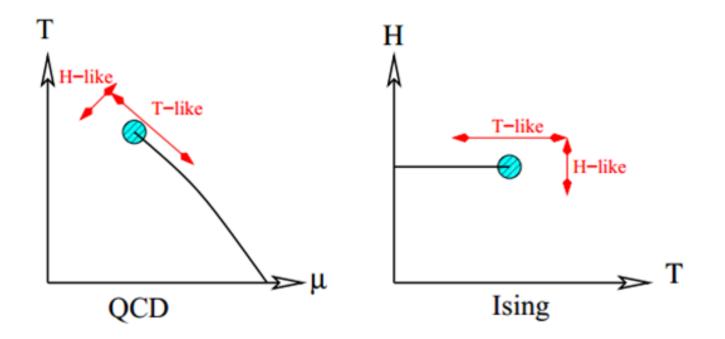


Quark number susceptibility



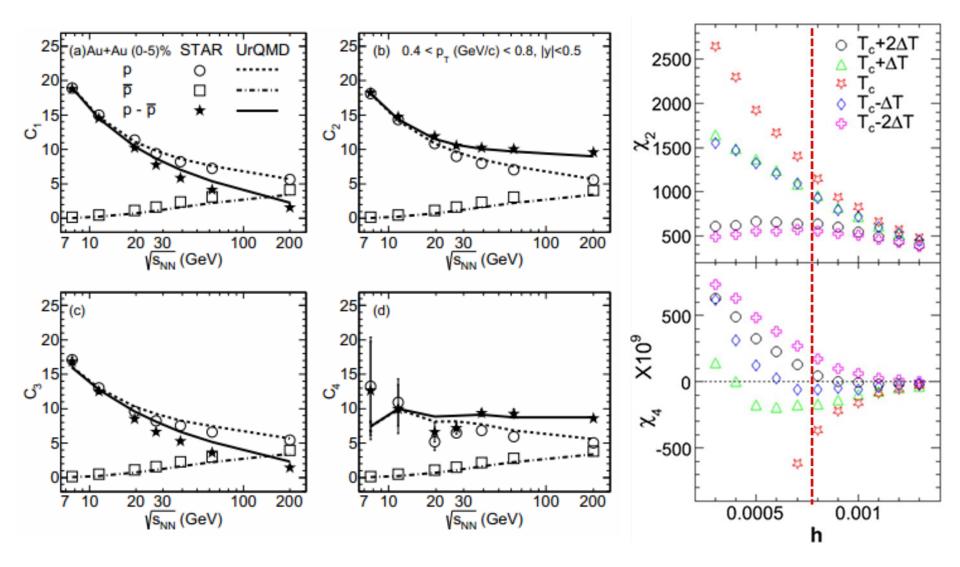
The 2nd and 4th order susceptibilities from PQM in the mean-field approximation

V. Skokov, B. Friman, and K. Redlich, PHYSICAL REVIEW C 83, 054904 (2011)

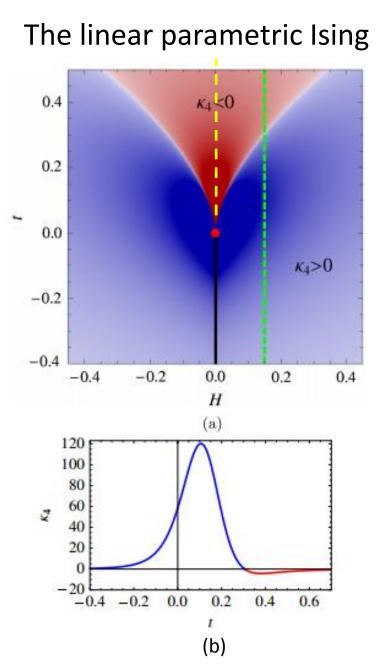


 $t \approx \beta - \beta_{cp} + a(\mu - \mu_{cp}), h \approx \mu - \mu_{cp} + b(\beta - \beta_{cp})$

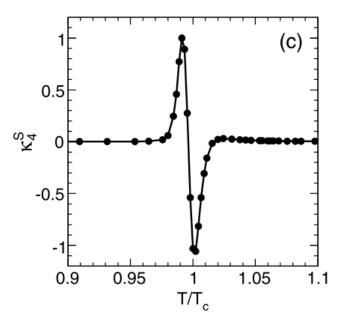
Cumulants of net-proton at RHIC



Critical fluctuations



Monte Carlo simulation



The fourth order cumulant is negative when the critical point is approached from the crossover side

M. A. Stephanov, PRL 107, 052301 Xue Pan et al, NPA 913, 206