Gluon saturation and Factorization Issues at small-x

Xiao, Bo-Wen 肖博文

Institute of Particle Physics, Central China Normal University

High Energy Strong Interactions:

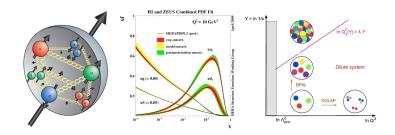
A School for Young Asian Scientists [http://conf.ccnu.edu.cn/~quadrangle2014/]

Outline

- Introduction
- Gluon distributions
- k_t Factorization at One-loop Order
- Phenomenological Application
- Summary

- Introduction
- Gluon distributions
- Phenomenological Application
- Summary

Deep into small-x region



- Partons in the low-x region is dominated by gluons. See HERA data.
- Gluon splitting functions $(g \to gg \text{ and } q \to qg)$ have 1/x singularities \to Gluon density rises at low x. (Small-x gluon radiation is favored.)
- BFKL equation \Rightarrow Resummation of the $\alpha_s \ln \frac{1}{x}$.
- When too many gluons squeezed in a confined hadron, gluons start to overlap and recombine ⇒ Non-linear dynamics ⇒ BK (JIMWLK) equation
- Use $Q_s(x)$ to separate the saturated dense regime from the dilute regime.
- Core ingredients: Multiple interactions + Small-x (high energy) evolution

Collinear Factorization vs k_{\perp} Factorization

Collinear Factorization

 k_{\perp} Factorization (Spin physics (TMD) and saturation physics)

- The incoming partons carry no k_{\perp} in the Collinear Factorization.
- In general, there is intrinsic k_{\perp} . It can be negligible for partons in protons.
- When gluon density is large $(\frac{1}{\alpha_s})$, the resummation of multiple interactions becomes important.
- In collinear factorization, PDFs are universal.

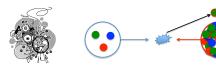
k_t factorization

 k_t factorization for gluon productions [Kaharzeev, Levin, Nardi, 03] surprisingly works.

- Extension to quark pair productions. [Fujii, Gelis, Venugopalan, 06; Fujii, Watanabe, 13]
- Factorization and NLO correction? Only proved for DY and Higgs!
- Important requirements: Hard scattering and color neutral final states.
- Violations of k_t factorizations. Quantitative study [Fujii, Gelis, Venugopalan, Lappi \cdots].
- Dijet processes[Collins, Qiu, 08],[Rogers, Mulders; 10].
- k_t factorization \simeq TMD factorization ? Yes, but more complicated.

Dilute-Dense factorizations

Dilute-Dense factorizations [Dumitru, Jalilian-Marian, 02; Hayashigaki, 06]



- projectile: $x_1 \sim \frac{p_\perp}{\sqrt{s}}e^{+y} \sim 1$ valence target: $x_2 \sim \frac{p_{\perp}}{\sqrt{s}}e^{-y} \ll 1$ gluon
- R. Feynman: Scattering protons on protons is like banging two fine Swiss watches to find out how they are built. Same analogy applies to AA collisions.
- The search for parton saturation is much easier in dilute-dense scatterings.
- Protons and virtual photons are dilute probes of the dense target hadrons.
- For dijet productions in forward pA collisions, effective k_t factorization:

$$\frac{d\sigma^{pA\to ggX}}{d^2P_\perp d^2q_\perp dy_1 dy_2} = x_p g(x_p, \mu) x_A g(x_A, q_\perp) \frac{1}{\pi} \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\hat{t}}.$$

Factorization and NLO Calculation

 Factorization is about separation of short distant physics (perturbatively calculable hard factor) from large distant physics (Non perturbative).

$$\sigma \sim x f(x) \otimes \mathcal{H} \otimes D_h(z) \otimes \mathcal{F}(k_{\perp})$$

- NLO (1-loop) calculation always contains various kinds of divergences.
 - Some divergences can be absorbed into the corresponding evolution equations.
 - The rest of divergences should be cancelled.
- Hard factor

$$\mathcal{H} = \mathcal{H}_{\mathrm{LO}}^{(0)} + rac{lpha_{s}}{2\pi}\mathcal{H}_{\mathrm{NLO}}^{(1)} + \cdots$$

should always be finite and free of divergence of any kind.

• NLO vs NLL Naive α_s expansion sometimes is not sufficient!

	LO	NLO	NNLO	
LL	1	$\alpha_s L$	$(\alpha_s L)^2$	
NLL		α_s	$\alpha_s (\alpha_s L)$	
			• • •	

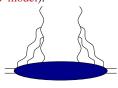
Evolution → Resummation of large logs.
 LO evolution resums LL; NLO ⇒ NLL.

- Introduction
- Gluon distributions
- Phenomenological Application
- Summary

A Tale of Two Gluon Distributions

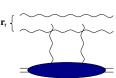
In small-x physics, two gluon distributions are widely used: [Kharzeev, Kovchegov, Tuchin; 03] I. Weizsäcker Williams gluon distribution ([KM, 98'] and MV model):

$$xG^{(1)}(x,k_{\perp})$$
 \Leftarrow



II. Color Dipole gluon distributions:

$$xG^{(2)}(x,k_{\perp})$$
 \Leftarrow



Remarks:

- The WW gluon distribution simply counts the number of gluons.
- The Color Dipole gluon distribution often appears in calculations.
- Does this mean that gluon distributions are non-universal? Answer: Yes and No!

Two Different Gauge Invariant Operator Definitions

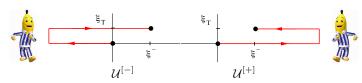
[F. Dominguez, BX and F. Yuan, Phys.Rev.Lett. 11]

I. Weizsäcker Williams gluon distribution: Gauge Invariant definitions

$$xG^{(1)} = 2 \int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-} - ik_{\perp} \cdot \xi_{\perp}} \operatorname{Tr}\langle P|F^{+i}(\xi^{-}, \xi_{\perp})\mathcal{U}^{[+]\dagger}F^{+i}(0)\mathcal{U}^{[+]}|P\rangle.$$

II. Color Dipole gluon distributions: Gauge Invariant definitions

$$xG^{(2)} = 2 \int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-} - ik_{\perp} \cdot \xi_{\perp}} \operatorname{Tr} \langle P|F^{+i}(\xi^{-}, \xi_{\perp})\mathcal{U}^{[-]\dagger}F^{+i}(0)\mathcal{U}^{[+]}|P\rangle.$$



- The WW gluon distribution is the conventional gluon distributions.
- The dipole gluon distribution has no such interpretation.

A Tale of Twin Gluon Distributions

I. Weizsäcker Williams gluon distribution (never been measured)

$$xG^{(1)}(x,k_{\perp})$$
 \Leftarrow

II. Color Dipole gluon distribution:

$$xG^{(2)}(x,k_{\perp})$$

- Quadrupole ⇒ Weizsäcker Williams gluon distribution;
- Dipole ⇒ Color Dipole gluon distribution;

A Tale of Twin Gluon Distributions

In terms of operators, we find these two gluon distributions can be defined as follows:

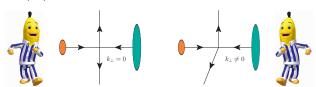
[F. Dominguez, C. Marquet, BX and F. Yuan, 11]

I. Weizsäcker Williams gluon distribution:

$$xG^{(1)} = 2 \int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-} - ik_{\perp} \cdot \xi_{\perp}} \operatorname{Tr} \langle P|F^{+i}(\xi^{-}, \xi_{\perp})\mathcal{U}^{[+]\dagger}F^{+i}(0)\mathcal{U}^{[+]}|P\rangle.$$

II. Color Dipole gluon distributions:

$$xG^{(2)} = 2 \int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-} - ik_{\perp} \cdot \xi_{\perp}} \operatorname{Tr} \langle P|F^{+i}(\xi^{-}, \xi_{\perp})\mathcal{U}^{[-]\dagger}F^{+i}(0)\mathcal{U}^{[+]}|P\rangle.$$



Questions:

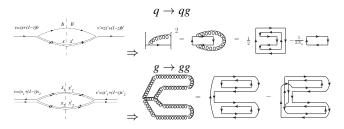
- Can we distinguish these two gluon distributions?
- How to measure $xG^{(1)}$ directly? DIS dijet.
- How to measure $xG^{(2)}$ directly? Direct γ +Jet in pA collisions.
- What happens in gluon+jet production in pA collisions? Need both gluon distribution

Dijet processes in pA collisions in the large N_c limit

Need both gluon distributions in the effective factorization

The Fierz identity:

Graphical representation of dijet processes

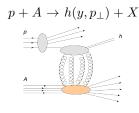


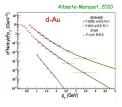
- Introduction
- Gluon distributions
- k_t Factorization at One-loop Order
- Phenomenological Application
- Summary

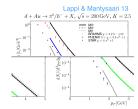
Forward hadron production in pA collisions

[Dumitru, Jalilian-Marian, 02] Inclusive forward hadron production in pA collisions

$$\frac{d\sigma_{\text{LO}}^{pA\to hX}}{d^2p_{\perp}dy_h} = \int_{\tau}^{1} \frac{dz}{z^2} \left[\sum_{f} x_p q_f(x_p, \boldsymbol{\mu}) \mathcal{F}(k_{\perp}) D_{h/q}(z, \boldsymbol{\mu}) + x_p g(x_p, \boldsymbol{\mu}) \tilde{\mathcal{F}}(k_{\perp}) D_{h/g}(z, \boldsymbol{\mu}) \right].$$

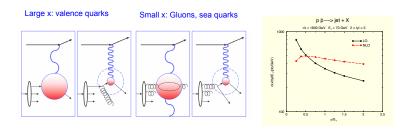






- $\mathcal{F}(k_{\perp})$ is related to the dipole gluon distribution.
- Caveats: arbitrary choice of the renormalization scale μ and K factor.
- NLO correction? [Dumitru, Hayashigaki, Jalilian-Marian, 06; Altinoluk, Kovner 11] [Chirilli, Xiao and Yuan, 12]

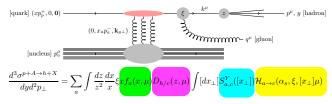
Why do we need NLO calculations?



- Due to quantum evolution, xf(x) and D(z) change with scale. This introduces large theoretical uncertainties. Choice of the scale at LO requires information at NLO.
- LO cross section is a monotonic function of μ , thus it is order of magnitude estimate.
- NLO calculation significantly reduces the scale dependence. More reliable.
- $K = \frac{\sigma_{\text{LO}} + \sigma_{\text{NLO}}}{\sigma_{\text{LO}}}$ is not a good approximation.
- NLO is vital in establishing the QCD factorization in saturation physics.

Factorization for single inclusive hadron productions

Factorization for the $p + A \rightarrow H + X$ process [Chirilli, BX and Yuan, Phys. Rev. Lett. 108, 122301 (2012)]

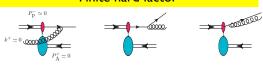


Collinear divergence: pdfs

Collinear divergence: fragmentation functs

Rapidity divergence: BK evolution

Finite hard factor



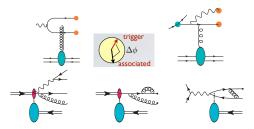
Rapidity Divergence

Collinear Divergence (P)

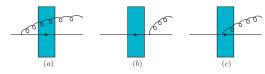
Collinear Divergence (F)

One-loop factorizations for other processes

- One-loop Calculation for Dijet processes, Higgs, Heavy-Quarkonium ⇒ Demonstration of factorization and connection to TMD.
- Sudakov double logarithms in small-*x* physics. [Mueller, BX and Yuan, Phys. Rev. Lett. 13].



• Extension to jet quenching (energy loss) problem for large size medium?



- Introduction
- Gluon distributions
- Phenomenological Application
- Summary

Numerical implementation of the NLO result

Single inclusive hadron production up to NLO

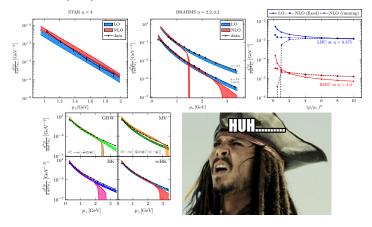
$$\mathrm{d}\sigma = \int x f_a(x) \otimes D_a(z) \otimes \mathcal{F}_a^{\mathrm{xg}}(k_\perp) \otimes \mathcal{H}^{(0)} \\ + \frac{\alpha_s}{2\pi} \int x f_a(x) \otimes D_b(z) \otimes \mathcal{F}_{(N)ab}^{\mathrm{xg}} \otimes \mathcal{H}_{ab}^{(1)}.$$
[quark] $(xp_p^+,0,0)$ p^μ , y [luadron] [quark] p^μ [gluon]

Consistent implementation should include all the NLO α_s corrections.

- NLO parton distributions. (MSTW or CTEQ)
- NLO fragmentation function. (DSS or others.)
- Use NLO hard factors. Partially by [Albacete, Dumitru, Fujii, Nara, 12]
- Use the one-loop approximation for the running coupling
- rcBK evolution equation for the dipole gluon distribution [Balitsky, Chirilli, 08; Kovchegov, Weigert, 07]. Full NLO BK evolution not available.
- Saturation physics at One Loop Order (SOLO). [Stasto, Xiao, Zaslavsky, 13]

Numerical implementation of the NLO result

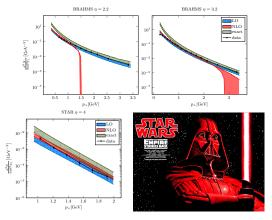
[Stasto, Xiao, Zaslavsky, Phys. Rev. Lett.14]



- Agree with data for $p_{\perp} < Q_s(y)$, and reduced scale dependence, no K factor.
- The abrupt drop of the NLO correction when $p_{\perp} > Q_s$ was really puzzling.
- For more forward rapidity, the agreement gets better and better.

The Old Empire Strikes Back

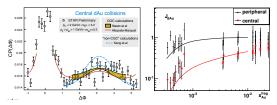
[Stasto, Xiao, Yuan, Zaslavsky, 14]



- Adopt exact kinematics and match with collinear factorization at high p_{\perp} . [G. Beuf]
- Systematic matching between the small-x and collinear factorization at high p_{\perp} .
- Saturation effects is elusive.
- The increment of the matching point implies the increase of Q_s .

Dihadron correlations in dAu collisions

$$C(\Delta\phi) = rac{\int_{|p_{1\perp}|,|p_{2\perp}|} rac{d\sigma^{pA
ightarrow h_1h_2}}{dy_1dy_2d^2p_{1\perp}d^2p_{2\perp}}}{\int_{|p_{1\perp}|} rac{d\sigma^{pA
ightarrow h_1h_2}}{dy_1d^2p_{1\perp}}} \quad J_{dA} = rac{1}{\langle N_{
m coll}
angle} rac{\sigma_{dA}^{
m pair}/\sigma_{dA}}{\sigma_{pp}^{
m pair}/\sigma_{pp}}$$

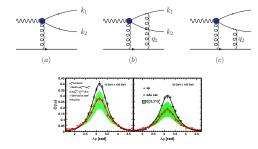


Comparing to STAR and PHENIX data

- Physics predicted by [C. Marquet, 09].
- Further calculated in [Marquet, Albacete, 10; Stasto, BX, Yuan, 11]
- Physical picture: de-correlation of dijets due to dense gluonic matter.

Dijet production in DIS

[L. Zheng, E. Aschenauer, J. H. Lee and BX, 14]



TMD factorization approach:

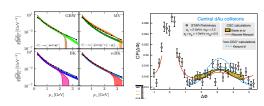
$$\frac{d\sigma^{\gamma_T^*A\to q\bar{q}+X}}{d\mathcal{P}.\mathcal{S}.} = \delta(x_{\gamma^*}-1)x_gG^{(1)}(x_g,q_\perp)H_{\gamma_T^*g\to q\bar{q}},$$

Remarks:

- For away side correlation $|k_{1\perp}| \simeq |k_{2\perp}| \gg q_{\perp} = k_{1\perp} + k_{2\perp}$.
- Unique golden measurement for the Weizsäcker Williams gluon distributions.
- EIC and LHeC will provide us perfect machines to study the strong gluon fields in nuclei. Important part in EIC and LHeC physics design. [arXiv:1212.1701; J.Phys. G39 (2012) 075001.]

- Introduction
- Gluon distributions
- Phenomenological Application
- Summary

Conclusion



- Effective k_t factorization for single and dihadron productions in pA collisions in the small-x saturation formalism at one-loop order.
- Towards the quantitative test of saturation physics beyond LL.
- Dijet (dihadron) correlation in pA collisions.
- Gluon saturation could be the next interesting discovery at the LHC and future EIC.

