

Particle Correlations at Variable pT Range at RHIC-STAR

Hua Pei

Central China Normal University

Outline

- Introduction of Correlations at RHIC energy
- Jets study through high-p_T correlation
- Direct photon as the controlling filter
- Initial state study through low- p_T correlation
- Summary and outlook

Why High-p_T?

Theoretically:

- Heavy-ion collisions produce QCD matter, dominated by soft partons p ~ T ~ 100-300 MeV
- Hard-scattering produce 'quasi-free' partons at the very early stage of collisions, long before the medium forms.
- These partons probe the medium through energy loss. Such 'hard probes' are sensitive to medium density and transport properties.

Experimentally:

• The initial state production of such partons are known relatively well from pQCD and p+p collisions results.

Measured R_{AA} is a ratio of yields at a given p_T

The physical mechanism is energy loss / absorption, shift of yield to lower p_T and yields.

High Energy Strong Interactions - A School for Young Asian Scientists

- Basic structure: back to back hard QCD event
- Trigger object: leading hadron, γ , Z⁰, clustered jet
 - \rightarrow yield of QCD objects reduced in medium, R_{AA} observables
- Trigger object defines near and away side

 \rightarrow correlation observables, near and away side $\rm I_{AA},$ correlation angular width

- Hadron analysis inside a found jet
 - ightarrow jet observables, jet shape and fragmentation function
- Can all be done dependent on orientation with event plane

Away-side peaks in correlation back-to-back jets

Phys. Rev. Lett. 97 (2006) 162301

Facts:

- Correlations are formed with particles at specific kinetic region .
- High- p_T particles are better proxies of jets.

Natural proposal:

Raise the p_T of all particles in correlation to get a higher purity of jets source.

Result:

- The away-side peaks are back with high- p_T trigger and associate.
- The recoil jets are restored, but their rates are much lower.

Di-jets Imbalance A, Result

First di-jets imbalance A, result in Au+Au collisions at RHIC:

- p_T>0.2GeV/c, R=0.4: A_J(AuAu) =A_J(pp) changes in Au+Au collisions are all contained in the cone, unlike the LHC. For R=0.2: A_J(AuAu) ≠ A_J(pp), the cone is too small.
- 2) Recoil jets are suppressed, path length is maximized.
- 3) Tools for jet analysis are ready at RHIC.

Jet(-axis) correlation

$$D_{AA}(p_T^{assoc}) = Y_{AuAu}(p_T^{assoc}) \cdot \langle p_T^{assoc} \rangle_{AuAu} -Y_{pp}(p_T^{assoc}) \cdot \langle p_T^{assoc} \rangle_{pp}$$

with appropriate background subtraction.

The reconstructed jets are used as triggers, instead of single high-p_T. *Higher acceptance, better background subtraction, more clear jet sample.*

Near-side of jets are consistent between p+p to Au+Au. **Proof of surface-bias.**

The associated particles on the away-side $(|\Delta \phi - \pi| < \pi/2)$ are integrated and compared.

Away-side energy balance: "lost" at high- p_T associated are largely balanced by "gain" at low- p_T end.

2014/9/23 Phys. Rev. Lett. 112 (2014) 122301 Scientists

Agreement within others

10

Different observables, different biases

Other biases such centrality and reaction plane

2014/9/23

High Energy Strong Interactions - A School for Young Asian Scientists

Direct photon trigger as filter

• 2-particles correlations ($\Delta \phi$): FF of the recoiling parton from direct γ and π^0

Parton initial energy "Compton-Scattering"
Different path length "on average"
Different q/g compositions
Observable: I_{AA} = D_{AA}/D_{NN}

• Reaction plane ($\Delta \phi$): Azimuthal anisotropy of π^0 and γ

> Path length dependence of $\triangle E$ Observable: v₂ (p_T) = <cos(2(ϕ_{pT} - ψ_{RP}))>

Direct photon correlation -- I_{AA}

> Both I_{AA} of direct photons and π^0 are flat within current uncertainties in the measured kinematics range 13

Evidence of initial state effect?

Correlations from d+Au Collisions

200 GeV dAu Collisions, STAR Preliminary FTPC centrality, 1 < p_r < 3 GeV/c 0.1 0-20% Near-side **(1/N _{trig}) d²N/d**∆η**d**∆φ 00 50 40-100% • Away-side -1 0 2 Δη Δn <u>×1</u>0⁻³ **STAR Preliminary** -4.5 <∆n< -2 (1/N_{trig}) d²N/dΔηdΔφ ⊠ Positive 1) \boxtimes Negative 2) ZYAM=0.0923(2) ZYAM=0.0849(2) 0 2 4 $\Delta \phi$

Fit Para.	40-100%	0-20%
Width	0.336(6)	0.382(9)
Area	0.0459(10)	0.0594(18)
Pedestal	0.0019(4)	0.0070(9)
χ²/ndf	19/25	19/25

 $(1 < p_T < 3 GeV/c)$

- Near-side peak: centrality dependent
- TPC-FTPC correlation, Ridge with Δη~3. Only for positive particles.
 Flow effect is not seen in this analysis.

Summary

- Hard-scattered partons and their evolution are important to probe medium properties.
- Correlations have been an effective tool to study medium-modified fragmentation functions of such partons.
- Different trigger / observables bring different biases, but work as filters of physics OTH.
- Whether the flow-like correlation is due to initial effect is still uncertain.
- Stay tuned for more STAR results!

