

Alaettin Serhan Mete UC Irvine

on behalf of the ATLAS and CMS collaborations

Dark Matter with Mono-lepton Signature

2

Direct pair-production

Leptonically decaying W recoiling against dark matter

Pros:

Lepton allows highly efficient triggering Low and reasonably well understood SM background

Possible experimental signature : High p_T electron recoiling against missing transverse momentum (E_T^{miss})

Mono-*W* is favored over mono-jet if the couplings to up and down quarks have the same magnitudes but opposite signs (due to constructive interference)

The Effective Field Theory (EFT)

- Four fermion contact interaction w/ two incoming quarks & two fermionic DM particles
- Assuming weakly-interacting particles, various couplings are investigated:

ATLAS		CMS	
• Three main operators of <u>arxiv:1008.178</u>	<u>33</u> • Tw	o main operators:	
$D1: \frac{m_{\mathbf{q}}}{M_*^3} \bar{\chi} \chi \cdot \bar{q} q \qquad D9: \frac{1}{M_*^2} \bar{\chi} \sigma^{\mu\nu} \chi \cdot \bar{q} \sigma_{\mu\nu} q$		$\frac{1}{\Lambda^2} \bar{\chi} \gamma^\mu \gamma^5 \chi \cdot \lambda_i \bar{q}_i \gamma_\mu \gamma^5 q_i$	$(\equiv D8)$
$D5: \frac{1}{M_*^2} \bar{\chi} \gamma^\mu \chi \cdot \bar{q} \gamma_\mu q \qquad \Lambda = \Lambda$	$I_* = \frac{M_{\text{messeng}}}{\sqrt{g_1 g_2}}$	$\frac{1}{\Lambda^2} \bar{\chi} \gamma^\mu \chi \cdot \lambda_i \bar{q}_i \gamma_\mu q_i$	$(\equiv D5)$

- χ is the spinor (Dirac fermion) including mass term m_{χ}
- Mass scale (Λ) is the scale of the effective interaction & $g_{1,2}$ are the coupling constants

- Relative sign of $\lambda_u \& \lambda_d$ determines the interference
 - $\xi = 0, \pm 1 \ (= \lambda_u \ \lambda_d \ \text{with} \ | \ \lambda \ | = 0 \ \text{or} \ 1)$
 - Most pronounced differences in (axial-)vector operators
 - ATLAS considers $\xi = \pm 1$ for D5 (+1 : D5d and -1 : D5c)
 - CMS considers all three cases for both D5 and D8

On the Validity of the EFT						
$\Lambda = M_* = \frac{M_{\rm messenger}}{\sqrt{g_1g_2}} \qquad \begin{array}{l} {\rm One} \ ``{\rm messenger}'' \\ {\rm Two \ couplings} \end{array}$						
For the EFT to make sense the "messenger" should be sufficiently heavy $M_{\rm messenger} > 2 \cdot m_\chi$						
In order to have a perturbative theory: $g_1g_2\leq (4\pi)^2$ resulting in: $\Lambda=M_*\geq rac{m_\chi}{2\pi}$						
or with a more stringent criterion: $g_1g_2=1$ results in: $\Lambda=M_*\geq 2m_\chi$						

arxiv:1408.2745

Search Strategies

- Select events with exactly one high p_T/E_T lepton (muon or electron)
 - **ATLAS** : $E_T(p_T) > 125$ (45) GeV in the e (µ)-channel
 - **CMS** : $E_T(p_T) > 100 (45)$ GeV in the e (µ)-channel
 - Asymmetry between channels due to different trigger thresholds
 - Stringent additional requirements on the objects to ensure high quality
 - Isolation, certain detector signature, etc.
- Exploit p_T^{lepton} vs E_T^{miss} balance by requiring:
 - **ATLAS** : $E_T^{\text{miss}} > 125$ (45) GeV in the e (μ)-channel
 - **CMS** : $0.4 < p_T^{\text{lepton}} / E_T^{\text{miss}} < 1.5 \text{ and } \Delta \phi(\text{lepton}, p_T^{\text{miss}}) > 2.5 \text{ (in both e / }\mu\text{-channels)}$
- Use transverse mass, $m_T = [2 \cdot p_T^{\text{lepton}} \cdot E_T^{\text{miss}} (1 \cos \phi_{l\nu})]^{1/2}$, as the main discriminator:
 - **ATLAS** : Perform "single-bin counting experiment" using events with $m_T \ge m_{T,min}$
 - $m_{T,min}$ is optimized for each model separately for best expected sensitivity
 - Same thresholds are used in both e/μ -channels
 - **CMS** : Perform "multi-bin counting experiment" using events with $m_T > 220 \text{ GeV}$
 - Takes advantage of full shape, converges to "single-bin counting" for low background
 - Same threshold of 220 GeV is used in both e/μ -channels

arxiv:1407.7494 arxiv:1408.2745 Event Kinematics

6

arxiv:1408.2745

• DM signal samples are generated using Madgraph5 @ LO at both ATLAS and CMS

	DM production									
m_{χ}		σB [p	b]							
[GeV]	D1	D5d	D5c	D9						
	$M_* = 10 \text{ GeV}$	$M_* = 100 \text{ GeV}$	$M_* = 1$ TeV	$M_* = 1$ TeV						
1	439	72.2	0.0608	0.0966						
100	332	70.8	0.0575	0.0870						
200	201	58.8	0.0488	0.0695						
400	64.6	32.9	0.0279	0.0365						
1000	1.60	2.37	0.00192	0.00227						
1300	0.213	0.454	0.000351	0.000412						

Typical production cross-sections (LO) for different operators Values are given for the sum of three lepton flavors $l = e, \mu, \tau$

		Dark	matter			
interference parameter ξ	1	0	-1	1	0	-1
Particle mass	C	$\sigma_{ m LO}{\cal B}$ (pb		χ-	proton cross	s section (pb)
	Spin-i	ndepend	ent $\Lambda = 2$	200 GeV	-	-
$M_{\chi} = 3 \mathrm{GeV}$	3.1	7.4	26.5	3.6	1.6	0.4
$M_{\chi} = 100 \mathrm{GeV}$	2.9	7.1	25.2	6.0	2.7	0.7
$M_{\chi} = 300 \mathrm{GeV}$	1.9	4.8	17.2	6.1	2.7	0.7
$M_{\chi} = 500 \mathrm{GeV}$	1.0	2.5	9.1	6.1	2.7	0.7
$M_{\chi} = 1000 \mathrm{GeV}$	0.1	0.3	0.9	6.1	2.7	0.7
<i>n</i>	Spin-	depende	ent $\Lambda = 20$	00 GeV		
$M_{\chi} = 3 \mathrm{GeV}$	3.1	7.4	26.5	0.2	0.8	1.9
$M_{\chi} = 100 \mathrm{GeV}$	2.5	6.4	22.8	0.3	1.4	3.2
$M_{\chi} = 300 \mathrm{GeV}$	1.2	3.1	11.1	0.4	1.4	3.3
$M_{\chi} = 500 \mathrm{GeV}$	0.5	1.2	4.3	0.4	1.4	3.3
$M_{\chi} = 1000 \text{GeV}$	0.03	0.1	0.2	0.4	1.4	3.3

Typical production cross-sections (LO) for different operators

ATLAS

CMS

arxiv:1408.2745

Backgrounds

ATLA	S	CMS		
Process	Generator	Cross-section		
TAZ - La	Powheg	NNLO (m _{lv} dependent)		
$VV \rightarrow UV$	Pythia	NLO (m T dependent)		
7.11	Powheg	NNLO (m _{ll} dependent)		
Z→II	Powheg (e,μ) & Pythia (τ)	NLO		
Top-quark pair	Powheg & MC@NLO	NNLO		
Singe top-quark	MC@NLO & Powheg	NNLO		
	Sherpa	multi-leg LO		
VV with $V = VV, Z$	Pythia	NLO		
	Data-driven	N/A		
wiulti-jet	Data-driven (e) & Pythia (µ)	N/A & LO		
γ+jet	Pythia (e-only)	LO		

Systematics (ATLAS)

Summary of systematic uncertainties for $m_T > 1.5$ TeV (except the luminosity uncertainty of 2.8%) Typical systematics for the Sequential Standard Model W' with mass of 2 TeV

	\mathcal{E}_{s}	sig	N_{k}	okg
Source	$e\nu$	μu	$e\nu$	μu
$W' \to \ell \nu$			•	
Reconstruction and trigger efficiency	2.5%	4.1%	2.7%	4.1%
Lepton energy/momentum resolution	0.2%	1.4%	1.9%	18%
Lepton energy/momentum scale	1.2%	1.8%	3.5%	1.5%
$E_{\rm T}^{\rm miss}$ scale and resolution	0.1%	0.1%	1.2%	0.5%
Beam energy	0.5%	0.5%	2.8%	2.1%
Multi-jet background	-	-	2.2%	3.4%
Monte Carlo statistics	0.9%	1.3%	8.5%	10%
Cross-section (shape/level)	2.9%	2.8%	18%	15%
Total	4.2%	5.6%	21%	27%

• Main contributions come from:

- Lepton efficiency/scale and resolution and limited MC statistics (mainly for the background)
- Cross-section (shape/level)
 - PDF choice, PDF+ α_s variations, and scale variations

Systematics (CMS)

- Main contributions come from:
 - Lepton momentum scale (µ-channel)
 - PDF (PDF choice, PDF+ α_s variations, and scale variations a la PDF4LHC)
 - W K-factor
 - Arises from additive vs multiplicative combination of QCD and EW higher-order corrections
 - Central value is the average of the two methods

arxiv:1407.7494 arxiv:1408.2745 *m*T Distributions

11

Event Yields (ATLAS)

m_{χ}	m_{Tmin}	Channel	$arepsilon_{ m sig}$	$N_{ m sig}$		$N_{ m bkg}$	$N_{\rm obs}$	m_{χ}	m_{Tmin}	Channel	$\varepsilon_{ m sig}$	$N_{ m sig}$		$N_{ m bkg}$	$N_{\rm obs}$
[GeV]	[GeV]							[GeV]	[GeV]						
				D1 Operator							•	D5c Operator			
1		$e\nu$	0.0294 ± 0.0044	87000 ± 13000				1		$e\nu$	0.0737 ± 0.0047	30.3 ± 1.9			
1		μu	0.0177 ± 0.0023	52500 ± 7000				1		μu	0.0435 ± 0.0034	17.9 ± 1.4			
100		$e\nu$	0.0396 ± 0.0052	89000 ± 12000				100		$e\nu$	0.0798 ± 0.0050	31.0 ± 1.9			
100		μu	0.0252 ± 0.0033	56600 ± 7500				100		μu	0.0437 ± 0.0034	17.0 ± 1.3			
200		$e\nu$	0.0484 ± 0.0057	65800 ± 7700				200		$e\nu$	0.0762 ± 0.0049	25.1 ± 1.6			
200	706	$\mu\nu$	0.0293 ± 0.0034	39900 ± 4600		116 ± 15	101	200	042	μu	0.0461 ± 0.0034	15.2 ± 1.1		96 ± 19	70
400	190	$e\nu$	0.0709 ± 0.0071	30900 ± 3100	eν	110 ± 13 84 ± 10	59	400	040	$e\nu$	0.0857 ± 0.0055	16.2 ± 1.0	eν	60 ± 12	79 40
400		μu	0.0398 ± 0.0041	17300 ± 1800	$\mu\nu$	64 ± 10	00	400		μu	0.0532 ± 0.0040	10.0 ± 0.8	$\mu\nu$	05.0 ± 8.0	40
1000		$e\nu$	0.0989 ± 0.0100	1070 ± 110				1000		$e\nu$	0.0987 ± 0.0091	1.28 ± 0.12			
1000		μu	0.0621 ± 0.0068	673 ± 73				1000		μu	0.0636 ± 0.0057	0.824 ± 0.074			
1200		$e\nu$	0.0964 ± 0.0095	138 ± 14				1900		$e\nu$	0.1010 ± 0.0095	0.240 ± 0.023			
1200		μu	0.0522 ± 0.0048	75.1 ± 6.9				1300		μu	0.0589 ± 0.0057	0.140 ± 0.014			
			•	D5d Operator	•			D9 Operator							
1		$e\nu$	0.0148 ± 0.0016	7230 ± 800				1		$e\nu$	0.0851 ± 0.0053	55.5 ± 3.5			
T		μu	0.0080 ± 0.0011	3890 ± 530				1		μu	0.0517 ± 0.0035	33.8 ± 2.3			
100		$e\nu$	0.0158 ± 0.0018	7580 ± 850				100		$e\nu$	0.0950 ± 0.0056	55.8 ± 3.3			
100		μu	0.0096 ± 0.0012	4600 ± 580				100		μu	0.0529 ± 0.0038	31.1 ± 2.3			
200		$e\nu$	0.0147 ± 0.0015	5850 ± 610				200		$e\nu$	0.1040 ± 0.0062	48.9 ± 2.9			
200	507	$\mu\nu$	0.0086 ± 0.0011	3420 ± 430		456 ± 45	414	200	049	μu	0.0553 ± 0.0039	26.0 ± 1.8		<u>96 19</u>	70
400	597	$e\nu$	0.0190 ± 0.0020	4220 ± 440	eν	430 ± 43 205 \pm 20	414 255	400	040	$e\nu$	0.1030 ± 0.0067	25.5 ± 1.6	eν	60 ± 12	79 40
400		μu	0.0113 ± 0.0013	2500 ± 300	$\mu\nu$	300 ± 30	200	400		μu	0.0578 ± 0.0042	14.3 ± 1.0	$\mu\nu$	00.0 ± 8.0	40
1000		$e\nu$	0.0281 ± 0.0025	450 ± 41				1000		$e\nu$	0.1070 ± 0.0092	1.63 ± 0.14			
1000		μu	0.0177 ± 0.0019	283 ± 30				1000		μu	0.0615 ± 0.0055	0.944 ± 0.084			
1200		$e\nu$	0.0291 ± 0.0028	89.3 ± 8.5				1200		$e\nu$	0.1020 ± 0.0100	0.285 ± 0.029			
1000		μu	0.0167 ± 0.0018	51.1 ± 5.4				1900		μu	0.0573 ± 0.0056	0.160 ± 0.016			

- Three main signal regions are used
- No statistically significant difference between the expected background and observation
- Expected signal yields are also shown for a selected set of mass scales
 - 10 GeV for D1, 100 GeV for D5d and 1 TeV for D5c and D9

Event Yields (CMS)

	($M_{\rm T} > 1.0 {\rm TeV}$	$M_{\rm T} > 1.5 {\rm TeV}$	$M_{\rm T} > 2.0 {\rm TeV}$
	Electro	on channel		
Data		24	1	1
SM Background		$26.0^{+2.5}_{-2.5}$	$2.02\substack{+0.26 \\ -0.25}$	$0.207\substack{+0.036\\-0.033}$
TW1/	$M_{\mathrm{W}'} = 2.5 \mathrm{TeV}$	$50.5^{+7.5}_{-7.5}$	$38.8^{+6.1}_{-6.1}$	$24.0^{+3.9}_{-3.9}$
vv	$M_{\mathrm{W}'} = 3 \mathrm{TeV}$	$10.3^{+2.1}_{-2.1}$	$7.8^{+1.9}_{-1.9}$	$5.8^{+1.5}_{-1.5}$
HNC-CI	$\Lambda = 4 \text{TeV}$	1120^{+110}_{-110}	368^{+47}_{-47}	105^{+19}_{-19}
TINC-CI	$\Lambda = 9 \text{TeV}$	$43.4_{-4.3}^{+4.3}$	$14.3^{+1.8}_{-1.8}$	$4.08\substack{+0.75 \\ -0.75}$
	$\xi = +1$	$0.402\substack{+0.050\\-0.050}$	$0.0346\substack{+0.0072\\-0.0070}$	$0.0033\substack{+0.0010\\-0.0010}$
DM vector-coupling, $M_{\rm v} = 50 \text{GeV}$, $\Lambda = 300$	$\xi=0$	$6.8^{+1.5}_{-1.5}$	$1.25\substack{+0.42\\-0.42}$	$0.22\substack{+0.11 \\ -0.11}$
	$\xi = -1$	$27.4^{+5.9}_{-5.9}$	$5.0^{+1.7}_{-1.7}$	$0.89\substack{+0.44\\-0.43}$
	Muor	n channel		
Data		35	3	1
SM Background		$26.1_{-4.3}^{+4.4}$	$2.35\substack{+0.70 \\ -0.60}$	$0.33\substack{+0.16 \\ -0.12}$
W/	$M_{\mathrm{W}'} = 2.5\mathrm{TeV}$	$48.7^{+4.1}_{-4.1}$	$36.1^{+2.8}_{-3.1}$	$20.3^{+3.0}_{-3.4}$
v v	$M_{\mathrm{W}'} = 3 \mathrm{TeV}$	$9.88\substack{+0.99\\-0.98}$	$7.33\substack{+0.64 \\ -0.65}$	$5.00\substack{+0.16 \\ -0.39}$
HNC-CI	$\Lambda = 9 \text{TeV}$	$42.4_{-3.8}^{+3.8}$	$13.8^{+2.0}_{-2.0}$	$4.47\substack{+0.90\\-0.94}$
TINC-CI	$\Lambda = 4 \text{TeV}$	1091^{+97}_{-98}	356^{+50}_{-52}	115^{+23}_{-24}
DM wester courling	$\xi = +1$	$0.271\substack{+0.070\\-0.067}$	$0.0151\substack{+0.0061\\-0.0056}$	$0.00088\substack{+0.00051\\-0.00043}$
$M_{\nu} = 50 \text{GeV}$. $\Lambda = 300$	$\xi=0$	$6.7^{+1.6}_{-1.6}$	$1.43\substack{+0.54 \\ -0.51}$	$0.31\substack{+0.17\\-0.15}$
	$\xi = -1$	$27.1^{+6.6}_{-6.5}$	$5.8^{+2.2}_{-2.1}$	$1.25^{+0.68}_{-0.60}$

- Yields are shown for a selection of $M_{\rm T}$ thresholds
- No statistically significant difference between the expected background and observation
- Expected signal yields are also shown for a selected mass scale and M_{χ}

Limits on σB

14

arxiv:1408.2745

Limits on Λ

arxiv:1407.7494

arxiv:1408.2745

Limits on χ -N σ

- Strong limits at low m_{χ} compared to direct detection experiments
- Complementary to other collider searches (mono-*W*/*Z* hadronic and mono-*Z* leptonic)

16

arxiv:1407.7494

arxiv:1408.2745

Conclusions

• A summary of ATLAS and CMS searches for DM pair-prod. in mono-lepton final state

- Results are based on the latest 8 TeV pp collision data w/ $L_{int} \sim 20 \text{ fb}^{-1}$
 - ATLAS : JHEP **09** (2014) 037, <u>http://arxiv.org/abs/1407.7494</u>
 - CMS : Submitted to PRD, <u>http://arxiv.org/abs/1408.2745</u>

• No significant excess above Standard Model expectations is observed in either search

• Looking forward to the upcoming 13 TeV *pp* collision data to see a hint for new physics