THE IMPACT OF FUNDAMENTAL PHYSICS ON MEDICINE

Ugo Amaldi

The beginnings of fundamental Physics and medical Physics

Wilhelm C. Röntgen

9 November 1895 Discovery of X rays

Discovery of radium

Marie Slodowska - Pierre Curie

First medical use of an accelerator

Announcement: December 28, 1985

Impact of Physics - UA - Globe - 10.4.14

3

First uses of X rays and radium in diagnostics and therapy

Emile Grubbe (Chicago) 4 hour irradiation of a breast cancer January 27,1896

Robert Jones and Oliver Lodge (Liverpool) Radiography of a bullet in a hand February 7, 1896

Henri Danlos (Paris) Lupus treatment with radium 1901

120 years of fundamental (beautiful) and medical (useful) physics

120 years of fundamental (beautiful) and medical (useful) Physics

1912: Victor Hess discovers 'cosmic rays'

100 YEARS AGO

Hess brought precision equipment in ten balloon ascents and discovered that radiation at 5 km altitude is twice larger than at see level.

Thirty years later the mechanism of cosmic rays was understood and marked the beginning of particle physics

muons are 'heavy electrons' with a mass that is 200 times larger

Thirty years later the mechanism of cosmic rays was understood and marked the beginning of particle Physics

muons are 'heavy electrons' with a mass that is 200 times larger

Fractionation in Radiotherapy

1912 - Paris <u>Claudius Regaud</u>: The same dose is more effective if subdivided

Institut du Radium

1930 - Claudius Regaud and <u>Henri Coutard</u>: Standard at 200 keV = 0,2 MeV: 2 grays per session 5 sessions per week treatment in 5-6 weeks

6

A breakthrough

UNITED STATES PATENT OFFICE.

WILLIAM D. COOLIDGE, OF SCHENECTADY, NEW YORK, ASSIGNOR TO GENERAL ELECTRIC COMPANY, A CORPORATION OF NEW YORK.

TUNGSTEN AND METHOD OF MAKING THE SAME FOR USE AS FILAMENTS OF INCANDESCENT ELECTRIC LAMPS AND FOR OTHER PURPOSES.

1,082,933.

Specification of Letters Patent. Patented

Patented Dec. 30, 1913.

Application filed June 19, 1912. Serial No. 704,580.

Today every CT Scan uses a Coolidge tube

120 years of fundamental (beautiful) and medical (useful) physics

1929: invention of the "cyclotron"

Ernest Lawrence -

Spiral trajectory of an accelerated particle

= 0.001 GeV

1929: invention of the "cyclotron"

Ernest Lawrence -

Spiral tajectory of an accelerated particle

Modern 30 MeV cyclotron for radioisotope production

Impact of Physics - UA - Globe - 10.4.14

1 MeV = 1 million electronvolts = 0.001 GeV

TERA

Cyclotrons in diagnostics and therapy

1936: Radio-sodium to study metabolism 1936: Radio-phosphorus to treat leukaemia

Cyclotrons in diagnostics and therapy

1939: The 60-inch cyclotron was financed for medical purposes and later used to treat patients with neutron beams

Impact of Physics - UA - Globe - 10.4.14

عgamma 2^µgamma 2

PET centre with a 15 MeV cyclotron

Most used substance Sugar FDG with Fluorine -18

Combination of CT with PET : CT-PET

morphology metabolisme

120 years of fundamental (beautiful) and medical (useful) Physics

1959: Veksler visits McMillan at Berkeley

Sigmur Varian

The first electron linac above 1 MeV

William W. Hansen

1939

Invention of the klystron

The first electron linac above 1 MeV

1939

Sigmur Varian

Invention of the klystron

1947 linac for electrons 1.5 MeV at 3 GHz

'Conventional' radiotherapy: linear accelerators dominate

'Conventional' radiotherapy: linear accelerators dominate

X

1 treatment in 30 sessions

In the world radiation oncologists use 20 000 electron linacs 50% of all the existing accelerators

70 years later VARIAN is still the market leader

120 years of fundamental (beautiful) and medical (useful) physics

Following the black yarn: particle physics at CERN

30 years ago: creation of CERN

Felix Bloch Physics Nobel Prize in 1952 First CERN Director General 1954-1955

Edoardo Amaldi

Secretary General of provisional CERN 1952-1954

Pierre Auger Science Director of UNESCO

CERN aerial view with the Geneva Airport

CERN accelerators are synchrotrons used as "colliders"

LHC in 2012 Large Hadron Collider 4 000 + 4 000 GeV

To focus only on the most important discovery made with CERN accelerators we most go back to 'cosmic rays'

100 YEARS AGO

Hess brought precision equipment in ten balloon ascents and discovered that radiation at 5 km altitude is twice larger than at see level.

To focus only on the most important discovery made with CERN accelerators we most go back to 'cosmic rays'

muons are 'heavy electrons' with a mass that is 200 times larger

From cosmic rays to the' Higgs particle'

100 years

CERN – 2012 Fabiola Gianotti Peter Higgs

1912 Victor Hess

From cosmic rays to the' Higgs particle'

CERN – 2012 Fabiola Gianotti Peter Higgs

1912 Victor Hess

2013: the Nobel prize winners

François Englert

Peter Higgs

Fabiola Gianotti

Peter Higgs

Following the red yarn

120 years of fundamental (beautiful) and medical (useful) Physics

Hadrontherapy (particle therapy)

1946 : « Bob » Wilson proposes to use protons, helium and <u>carbon ions</u>

Lawrence PhD student

Founder and first Director of FERMILAB (Chicago) 1967-1978

protons: 230 MeV C ions : 5000 MeV

1. Healthy tissues are spared by protons and carbon ions

protons: 230 MeV C ions : 5000 MeV

1. Healthy tissues are spared by protons and carbon ions

TERA

protons: 230 MeV C ions : 5000 MeV

1. Healthy tissues are spared by protons and carbon ions

TERA

protons: 230 MeV C ions : 5000 MeV

1. Healthy tissues are spared by protons and carbon ions

2. Carbon ions have charge = 6 and produce in the DNA clustered unrepairable damages thus killing at the end of the range the cells which are radioresistant to both X rays and protons.

60 years ago: first proton treatment at Berkeley

Cyclotron solution for protons by IBA - Belgium

If proton accelerators were 'small' and 'cheap', no radiation oncologist would use X rays.

Superconducting cyclotron solution by Varian

HIMAC in Chiba is the pioner of carbon therapy

The GSI pilot project : 1997-2003

450 patients treated with carbon ions

51

The GSI pilot project : 1997-2003

450 patients treated with carbon ions

GSI designed HIT (Heidelberg Ion Therapy centre) where 1800 patients have been treated since 2009

Eye and Orbit

- Choroidal Melanoma
- Retinoblastoma
- Choroidal Metastases
- Orbical Rhabdomyosarcoma.
- Lacrimal Gland Carcinoma.
- Choroidal Hemangiomas

Abdomen

- Paraspinal Tumors
 Soft Tissue
 - Sarcomas, Low Grade Chondrosarcomo Chordomas

Central Nervous Syste

- Adult Low Grade Gliomas
- Pediatric Glomas
- Acoustic Neuroma Recurrent or Unresectable
- Pituitary Adenoma Recurrent or Unresectable
- Meningioma Recurrent or Unresoctable
- Craniopharyngioma
- Chordomas and Low Grade Chondrosarcoma Clivus and Cervical Spine
- Brain Metastases
- Optic Glioma
- Arteriovenous Malformations

Head and Neck Tumors

- Locally Advanced Oropharynx
- Locally Advanced Nasopharanx
- Seft Tissue Sarcoma Recurrent or Unresectable
- Misc. Unresectable or Recurrent Carcinomas

Chest

- Non Small Cell Lung Carcinoma
 Early Stage—Medically Inoperable
- Paraspinal Tumors Soft Tissue Sarcomas, Low Grade Chondrosarcomas, Chordomas

The site treated with hadrons

In the world protons: 100'000 patients (8% per year)

Pelvis

- * Early Stage Prostate Carcinoma
- Locally Advanced Prostate Carcinoma
- * Locally Advanced Cervix Carcinoma
- Sacral Chordoma
- Recurrent or Unresectable
 - Rectal Carcinoma
- Recurrent or Unresectable Pelvic Masses

carbon ions 10'000 patients (most at HIMAC)

Numbers of potential patients by European Network for Light Ion Therapy

X-ray therapy

for 1 million inhabitants:

2'000 pts/year

Protontherapy

12% of X-ray patients

240 pts/year

<u>Therapy with carbon ions for radio-resistant tumour</u> (comparisons with proton therapy are needed to define sites and protocols)

3% of X-ray patients

60 pts/year

TOTAL for 1 M

300 pts/year

ENLIGHT coordinator: Manjit Dosanjh

Two programmes :

 Synchrotron for C ions (and protons): CNAO in Pavia

Linacs for protons and carbon ions : A.D.A.M.

CNAO = Centro Nazionale di Adroterapia Oncologica in Pavia

CNAO = Centro Nazionale di Adroterapia Oncologica

CNAO at Pavia

The synchrotron

January 2014: 200 patients treated

MedAustron promoted and participated in PIMMS

MedAustron promoted and participated in PIMMS

MedAustron promoted and participated in PIMMS

Construction completed in Wiener Neustadt:

three days ago the protons have circulated in the synchrotron

To conclude: in 2014 a further step has been made

To conclude: in 2014 a further step has been made

Impact of Physics - UA - Globe - 10.4.14

CERN

CNAO at Pavia

PHYSICS IS BEAUTIFUL AND USEFUL Physik ist schön und nützlich La Physique est belle et utile La Fisica è bella e utile

The importance of the Higgs "field"

Impact of Physics - UA - Globe - 10.4.14

ATLAS: event Higgs —> 4 electrons

Two large 'detectors' at LHC

Event in ATLAS: production of 4 muons=heavy electrons

The Higgs particle is the 37th field but it is the mostimportant one because...

the Higgs 'field' is a continous medium that fills the space since one hundredth of a billionth of a second (10⁻¹¹ s) after the Big Bang

The Higgs particle is the 37th particle but it is the most important one because...

the Higgs 'field' is a continous medium that fills the space since one hundredth of a billionth of a second (10⁻¹¹ s) after the Big Bang

the particles interact differently with the Higgs field and thus they have different masses

Metaphor of the two twins practicing Nordic sky on a flat snow "field"

Metaphor of the two twins practicing Nordic sky on a flat snow "field"

...but if the snow 'field' is not seen he is slower because has a larger mass

2013: the Nobel prize winners

François Englert

Peter Higgs

Fabiola Gianotti

Peter Higgs

TERA novel accelerators for cancer therapy: proton linacs

Prototype of CCL built and beam tested by TERA-CERN-INFN: 2003

Mario Weiss

Commercial prototype built and power tested by A.D.A.M.: 2011

First Unit of LIGHT Linac for Image Guided Hadron Therapy

A.D.A.M. = Applications of Detectors and Accelerators to Medicine

Inauguration by the CERN DG

Centre offered by A.D.A.M. - CERN spin-off Company acquired by Advanced Oncotherapy in 2013

Linac for Image Guided Hadron Therapy

Linac for Image Guided Hadron Therapy

It is clear to anybody who visits a hospital that Physics applications are everywhere. Medical doctors use Physics when they measure a blood pressure, when they perform an ultrasound scan to determine the sex of an unborn child, when they take radiography or a CT scan. In particular fundamental physics, which aims at understanding how particles and forces act in the subatomic world and are organized to form everything we observe around us, has numerous medical applications.

Everything started in 1895 with the discovery of X-rays by Roentgen, who was using the best particle accelerator of the time. In the lecture the theme of the title will be exposed by following the 120 years long story of particle accelerators used to cure tumours. The time is well chosen because the year 2014 marks the 60th anniversary of CERN, the largest particle physics laboratory in the world, and of the first cancer treatment with protons done at Berkeley.

