

24 Apr 2014

Status of China-ADS project

I. Introduction

- Motivation
- ADS Roadmap in China
- New Site & Institute for C-ADS
- **II. Current Progress of C-ADS**
 - Overview of C-ADS
 - Accelerator System
 - Spallation Target
 - Subcritical reactor
- **III. Open Questions on ADS**

- Accelerator Driven System was proposed for nuclear waste transmutation, accelerator driven thorium reactor (ADTR)..., since early 1990's
- ADS produce hard, intense spallation neutron by accelerating high power proton on target for driving subcritical core
- ADS consists of high power proton accelerator & spallation target, subcritical core

ADS and FR in Advanced Nuclear Fuel Cycles — A Comparative Study, NEA/OECD, 2002

- ADS is better at burning waste than Fast Reactors
- ADS employs a fast neutron spectrum and solid, fertile-free fuel with the primary mission of transmuting transuranics or MA
- ADS could support more PWR waste transmutation

Nuclear Power Development in China

- To July 2013 (http://www.iaea.org/NuclearPower/Systems-and-Databases/index.html)
 - -18 reactors in operation, 13.860GW_e; (6th in the world)
 - -28 reactors under construction, 27.790GW_e; (1st in the world)
- Estimation for the future (slow down after 2011.3)
 - -2020: ~58 GW_e NPP in operation
 - -2030: ~10% of NP to total power capacity
 - 2050: 350~400 GW_e, ~20% of NP to total power capacity \rightarrow almost same as the scale of the total in the world today!

Nuclear Waste Management is a serious issue!

Relationship Between CAS & National Plan

Next Step in CAS: Nuclear fuel with MA an so on

I. Introduction

- Motivation
- ADS Roadmap in China
- New Site & Institute for C-ADS

II. Current Progress of C-ADS

- Overview of C-ADS
- Accelerator System
- Spallation Target
- Subcritical reactor

III. Open Questions on ADS

Modified Gas-cooled Backup

Accelerator

Accelerator System Overview

Injector I

粒子	质子	单位	加速器分段	能量(Me	V) 长度(i
能量	~250	MeV	ECR+LEBT	0.035	~2.5
最大流强	~10	mA	RFQ+MEBT	2.0~3.5	~11
最大束流功率	~2.5	MW	Injector	10~20	10~15
占空比	100	%	MEBT2(双支)	10~20	~15
束流损失	<1	W/m	Main-Spoke021	~40	~42
	<25000	1s <t<10s< td=""><td>Main-Spoke040</td><td>~160</td><td>~62</td></t<10s<>	Main-Spoke040	~160	~62
年失束次数	<2500	10s <t<5m< td=""><td>Main-Ellip063</td><td>~250</td><td>~50</td></t<5m<>	Main-Ellip063	~250	~50
	<50	t>5m	HEBT	~250	~10

(m)

Accelerator System: ECRIS + LEBT

ECRIS+LEBT is commissioning at IMP

- The first ECR Proton Ion Source is commissioning at IMP.

Stability still need to be improved in long time.

Accelerator System: Two options of 10-MeV Injectors

Injector IIBase on 162.5 MHz and Superconducting HWR cavityat IMP, Lanzhou

Accelerator System: RFQ for Injector I

Parameters	Value
Frequency (MHz)	325
Injection energy (keV)	35
Output energy (MeV)	3.2128
Pulsed beam current (mA)	15
Beam duty factor	100%
Inter-vane voltage V (kV)	55
Beam transmission	98.7%
Average bore radius r_0 (mm)	2.775
Vane tip curvature (mm)	2.775
Maximum surface field (MV/m)	28.88 (1.62Kilp.)
Cavity power dissipation (kW)	272.94
Max. copper power/Area (W/cm ²)	3.77
In norm. rms e (x,y,z) (πmm.mrad)	0.2/0.2/0
Out norm. rms e (x/y/z) (πmm.mrad/MeV-deg)	0.2/0.2/0.0612
Vane length (cm)	467.75
Accelerator length (cm)	469.95

Progress of RFQ for Injector I (325MHz)

Cold test of all modules has been done. Commissioning is also has been done.

Parameters	Unit	
Freq.	MHz	325
Beta		0.12
Epeak/Eacc		4.3
Bpeak/Eacc	mT/(MV/m)	6.5
Uacc=0.78MV	MV/m	30.1
R/Q	Ω	161

Status of China ADS project

Accelerator System: RFQ for Injector II

Parameter	Value
Ion species	Proton
frequency [MHz]	162.5
Inter-vane voltage V (kV)	65
Average bore radius r_0 (cm)	0.5731
Vane tip curvature (cm)	0.4298
ρ / r_0	0.75
Vane length / Total length (cm)	419.2 / 420.8
<i>m</i> _{max}	2.38
Number of cells	192 (including 2 T cell)
Maximum surface field (MV/m)	15.7791
Synchronous phase	From -90° to -22.7°
a _{min} (cm)	0.3158
Transverse acceptance (RMS, x/y, πmm.mrad)	0.3/0.3
Input norm. RMS emittance (x/y, πmm.mrad)	0.3/0.3
Output norm. RMS emittance (x/y/z, πmm.mrad, keV.ns)	0.31/0.31/0.92
Overall beam transmission @ 0 /15 mA	99.7% / 99.6%

Test module is on high power testing

Progress of RFQ for Injector II (162.5MHz)

Commissioning with proton beam 165MHz RFQ module Beam ICT/ RFQ ACCT FCT2 BPM DCC1 DCCT **ECR** Stop FCT1 File Control Setup Trigger Measure Analyze Utilities Help 27 Jul 2013 8:39 Pt Signal before ACCT Signal from ICT ןך<mark>י</mark> Signal from beam stop (0) More

(1 of 2)

ents Markers Status Scale

ECRIS: CW 8mA RFQ: 560keV, Beam duty factor 80%, Transmission>70%

HWR010 for Injector II

Freq. (MHz)	162.5
βopt	0.10
Epk/Eacc	5.34
Bpk/Eacc	10.92
Q0 (@4.5K)	4.1E8
Uacc (MV)	0.78
Pdiss (W)	10

IMP-HWR010-S-002 and 005 Q0 vs. Eacc VTA Results

Status of China ADS project

325MHz, Spoke CW, 10kW Tested 325 MHz, RFQ CW, 100 kW Tested 162.5MHz, HWR CW, 20kW Tested

Testing Item	Requirements	
frequency	$162.5 \text{ MHz} \pm 2 \text{ MHz}$	
Freq. stability	< ±1×10-8/day	
RF standard	0dBm \sim 10dBm continuous tuning	
Output Power	≥20kW (CW, Pulse) full reflection	
Duty factor	1%~100% tuning	
Harmonic	≤-30dBc	
Harmonic of PS	≤-50dBc	
Random Harmonic	≤-60dBc	
Amplitude stability	$\leq \pm 1 \times 10^{-2}/24$ hours	
Phase stability	≤±5°/24hours, open loop	
Output interface	50Ω coaxial, 4-1/2	

The solid state amplifiers of 162.5 MHz at 20 kW and 325 MHz at 10 kW were tested. All specifications are reached.

2012-12-10

Spallation Target

Proton Parameters		
Energy, / MeV	250	
Current, /mA	10	
Physical Dimesion, /cm		
Inner Radius for Window	7.0	
Outer Radius for Window	7.3	
Inner Radius for Bottom	12.0	
Outer Radius for Bottom	12.3	
Inner Radius for P-Tube	7.0	
Outer Radius for P-Tube	7.3	
Effective Hight	32.3	
Material		
Coolant Material	LBE	
Structure Material	T91	

Deposition Energy Distribution

Power	2.5MW
Average Power Density	947.9W/
for Window	cm ³
Highest Power Density	2099.9
for Window	W/cm ³
Target Region Power	1899.9
Density	W/cm ³
Target Region Power	5019.9
Density	W/cm ³
Neutron Flux for	6.2E+14
Window	n/cm ² *s

Velocity Vectors Colored By Velocity Magnitude (m/s)

Status of China ADS project

LBE Heat Exchange System

	Coolant	LBE
Primary	Mass Flow Rate (kg/s)	171
	In/Outlet Temp (°C)	302.39/2 20
	Coolant	Oil
Secondary	Mass Flow Rate (kg/s)	54.34
Secondary	In/Outlet Temp (°C)	130/153

Heat Transfer Diagram

Auxiliary System

铅铋回路出口

LBE Charge & Discharge System

LBE Purification System

间路净化

气储

系统

Gas-Cooled Spallation Target

Target structure schematic diagram

- •Tungsten target, length 22cm, width 22cm, height 10cm. •Helium channel inner diameter 5mm.
 - •The punching shown in figure, square grid arrangement, 8mm pitch.

proton energy deposition neutron leakage spectrum

neutron leakage distribution at the side of the target

Pressure: 4 MPa; Temperature: 300 K; Coolant Inlet Velocity: 30m/s

Status of China ADS project

Pressure: 4 Mpa; Inlet Velocity of He: 30 m/s

• The highest temp of spallation target wall is 2083.9 K, reducing 116.5 K comparing to single model.

Status of China ADS project

Pressure: 4 Mpa; Inlet Velocity of He: 30 m/s, Forced Heat Transfer Coefficient K=2

• The highest temp of spallation target wall is 1397.2 K, reducing 686.7 K comparing to single model.

Sub-Critical Reactor

项目		参数	
Туре		Pool Type	
Power		10MW	
	Active Height	800mm	
	Active Diameter	1,543mm	
	Fuel	UO ₂ (19.75%)	
Reactor	燃料包壳	316Ti	
Core	²³⁵ U	889kg	
	Average Power	21.23W/cm	
	Power Peak Factor	1.96	
	Neutron Flux	7.93×10 ¹³ n/cm ² s	
Structure I	Material	316L	
Outer Diameter of Main Vessel		4,420mm	
Height of Main Vessel		6,300mm	
Mass of LBE Coolant		~700t	

Nuclear Fuel Design 上端塞 120 湖南 上反射层 燃料棒组件 反射组件 屏蔽组件 燃料 中子源组件 1240 控制棒组件 包売 调节棒组件 下反射层 气室 σ

下端塞

Neutronics

参数	结果
Initial Excess Reactivity	0.02056
Shutdown Margin/pcm	12022
Initial Neutron Flux/n/cm ² s	7.93E+13
Power Peak	1.96
Fuel Mass /tHM	4.50
²³⁵ U /t	0.889
Active Diameter/m	1.543
Active Height/m	0.80
Doppler Coefficient/pcm/K	-5.078
Temp Coefficient/pcm/K	-46.52

中子剂量场分布

T-H Design

- Large Diameter
- Large Pitch

名称	参数
T-Power (MW)	10
Average Power Density for Pin (kW/m)	3.9
Inlet/Outlet Temp ($^{\circ}C$)	260/390
Circulation Height (m)	2
Coolant Average Flow Rate (m/s)	0.17
Mass Flow Rate (kg/s)	529.5
Highest Temp for Fuel Cladding ($^{\circ}C$)	462
Highest Temp for Fuel ($^{\circ}C$)	660

Coolant Distribution

T-H Design

项目		设计方案	
	Coolant	LBE	
Drimony Coolont System	Drive Mode	Natural Convection	
Primary Coolant System	Operation Temp	280/393℃	
	Auxiliary Heater	200kW	
	Coolant	2MPa Water	
Secondary Circuit	Drive Mode	Mechanical Pump	
	Operation Temp	190°C /204°C	
	Coolant	Water	
Thind Cincuit	Drive Mode	Mechanical Pump	
I mra Circuit	Operation Temp	28/35℃	
	Hot Trap	Air Cooling Tower	
	Coolant	LBE	
	Drive Mode	Natural Convenient	
Decay Removal System	Operation Temp	~279/357℃ (Normal Operation) ~182/192℃ (Shut-down Mode)	
	Hot Trap	Air Cooling Tower	

LBE Process System

Purification System

- Temp of Cold Trap 200°C
- Volume of Cold Trap=1~2% Reactor Core

Oxygen Control System

- Oxygen Control Box Heated to 550°C
- Top level in the system

Main Coolant System for LBE Reactor

Reactor Noumenon

数名称 单位		设计值			
Main Ve	ssel				
Outer Radius	m	4.38			
Height	m	6.4			
Safety Vessel					
Outer Radius	m	4.72			
Height	m	7.22			
Reactor Vessel Cover					
Outer Radius of Reactor Cov	er n	4.4			
inner Radius of Reactor Cove	e r n	2.88			

□ Main Vessel + Safety Vessel

•Double Pool Design;

•Higher Inertia;

Double Plug Cocks Refueling System

Engineered Safety System

- Containment System
- Accident Heat Removal System
- Reactor Vessel Overpressure Protection
 System
- Safety Vessel

Reactor Building Layouts

		Steam Generator	Beam Pipe
Accelerator	250MeV, 4mA		
Target	solid tungsten		Y
Length, width, height	22cm、22cm、10cm		
Fuel form	TRISO particles	8), and an initial ini	
Fuel in fast region	(U-MA)O ₂ /SiC	¥.	
Number of fuel assembly layers	5		
Total number of assembly layers	9		
Assembly subtense distance/cm	35.8		
Assembly interval/cm	0.2		
Assembly height/cm	40		
Number of assemblies in T/F region	6/24		Target
Enrichment in T region	30%+MA		region
Enrichment in F region	1#10% 2#15%		Core
Coolant	Не		
Coolant pressure	4MPa	00 00	
Mass flow rate	12.5kg/s		<i>5</i> ° 0
Inlet/outlet temperature of the core	500k/654k	Hot Gas Duct	Pressure Vessel

Transmutation Region UO2+MA, Enrichment 30%, Fuel Region 1# 10%, Fuel Region 2# 15%, Active Zone Height 200cm

时间/d	Ψ	IP/mA	βeff/pcm	keff	功率峰因
	1		/ I		子
					L L
0	2.84	0.65	608	0.98549	1.3933
Ŭ		0.00			1.0700
50	3.66	0.71	725	0.97948	1.3890
	2.00	0071			1.00000
100	3.10	0.92	497	0.97776	1.3576
100	0.10			0.77770	1.0070
150	3.84	0.84	380	0.97480	1.3654
100	2101	0.01		0.97100	1.0001
200	3 42	0.96	761	0 97446	1 3527
200	5.12	0.20	, 01	0.97110	1.3527
250	3.74	0.92	757	0.97314	1.3576
	0171		101	0197011	1.0070
300	3 55	1.01	723	0 97220	1 3459
200	5.00	1.01	, 20	0.77220	1.0.107
350	3 59	1.03	752	0 97114	1 3520
550	5.57	1.05	,52	0.27114	1.3320

Keff Only1.5% in One Cycle Steady With Depletion

The most central Region Neutron Energy Spectrum

Transmutation Region Tem Distribution

Temperature difference between inside and outside the particles is only 0.24 K the maximum temperature is 805.41 K,

Fuel Region Tem Distribution

Temperature difference between inside and outside the particles is only 7.07 K, the maximum temperature is 962.56 K

- Net quantity of heat produced in T & F region;
- Thermal isolation between each Assembly;
- Thermal isolation between each channel in the same assembly;

Temperature distribution in different coolant channel

Temperature distribution in Coolant velocity in different different heat structure around the coolant channel

coolant channel

Reactor Internals=Ceramic & Metallic Internals

Ceramic Internals

(Graphite+Carbon Brick)

- •Graphite—Reflector。
- •Carbon Brick—Thermal Isolation

Metallic Internals: Support

the reactor core

名 称	尺寸规格(mm)	材料
Vessel	Height11200	12Cr2Mo1R
	Inner Diameter 4500	
Тор	Thickness 120	12Cr2Mo1R
Support	Diameter 4200	
Bottom	Thickness 120	12Cr2Mo1R
Support	Diameter 4200	
Ceramic	Support roller	40CrNiMo
internals	(Diameter 150)	42CrMo
support	Cover	
roller	(Thickness 125)	

Main Coolant System Pressure Boundary

Reactor Pressure Vessel (RPV)

Steam Generator Pressure Vessel (SGPV)

Hot Gas Duct Pressure Vessel (HDPV)

Function: Primary Coolant Pressure Boundary.

The most important safety barrier for the reactor $\ _{\circ}$

Operation Temp :4.0MPa; Design Temp: 350°C; Operation Temp: 250°C .

RPV: Inner Diameter 4200 mm, Height 11200 mm, Thickness150mm.

SGPV: Inner Diameter 2500 mm, Height 11400 mm, Thickness 50~100 mm.

HDPV: Length 3350mm, Inner Diameter 900mm, Larger Opening Flange on two side

Main Coolant Helium Fan

Para	Value
Тетр	250 °C
Pressure	4.0 MPa
Density	3.62 kg/m ³
Mass Flow Rate	12.5kg/s
Pressure Raise	0.06 MPa
Vane wheel type	Centrifugal
Speed	5000 rpm
Power	165 kW

主氦风机

Helix Tubes Steam Generator

Constitution: Helix heat transfer tubes, Connection tubes, Central tube, Compensation tubes, Main feed water box, Main Steam pipe box.

Process: 404 °C Helium flows from the bottom to the top of the helix tube bundles , then rise the pressure by the main coolant pump and cold to be 250 °C

Negative Pressure Ventilation Blasting Membrane

负压通风爆破膜

Function: Overpressure Protection for Primary Coolant System

• Design Pressure : 0.127MPa.

`o-*微*-😤

Auxiliary System — Refueling System

Function:

Refueling the fresh and spent fuel for the reactor core from the storage pool.

• Shaft seal structure

Auxiliary System-Helium Circulatory & Purification System

H ₂	H ₂ O	CO	CO_2	CH_4	N_2	O ₂
≤30	≤2	≤30	≤6	≤5	≤2	≤2

Impurity Content in Coolant Helium on Operation Condition(ppmv)

Helium Circulatory & Purification Flowchart

- 1. Remove Chemical Impurity($H_2O_{1}O_{2}$, CO_{2} , CO_{2} , CO_{3} , H_2 , CH_4 , N_2), Radionuclide (Kr, Xe, T)and so on.
- 2. Purification System including:
- Normal operation condition purification system
- Accident condition purification system

Thermodynamic Cycle ParametersHelium Inlet Temp404℃;Feed Water Mass Flow Rate5kg/s;Steam Outlet Temp270℃;

Helium Outlet Tem	250° ℃
Steam Outlet Pressure	4.1MPa
Feed Water Inlet Temp	224 ℃

Thermodynamic Cycle Flowchart

Reactor Building

Floor Area 6007m², Rooftop Elevation+62.65m

Shielding Concrete Cooling System

I. Introduction

- Motivation
- ADS Roadmap in China
- New Site & Institute for C-ADS
- **II. Current Progress of C-ADS**
 - Overview of C-ADS
 - Accelerator System
 - Spallation Target
 - Subcritical reactor
- **III. Open Questions on ADS**

- Relationship of purpose & acceptable objective on ADS
- The role of nuclear fuel cycle——Future
- How to understand the reliability of the ADS
- Whether there are some opportunities to find new physics on ADS
- Industrial demo facility requirements

Welcome Collaboration !

THANKS FOR ATTENTION